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ABSTRACT
With the aim of improving performance in Markov Decision Prob-
lem in an Off-Policy setting, we suggest taking inspiration from
what is done in Offline Reinforcement Learning (RL). In Offline RL,
it is a common practice during policy learning to maintain proxim-
ity to a reference policy to mitigate uncertainty, reduce potential
policy errors, and help improve performance. We find ourselves in
a different setting, yet it raises questions about whether a similar
concept can be applied to enhance the performance i.e., whether
it is possible to find an expert capable of contributing to perfor-
mance improvement, and how to incorporate it into our RL agent.
Our attention is particularly focused on Monte Carlo Tree Search
(MCTS) as expert guidance. MCTS renowned for its state-of-the-
art capabilities across various domains, catches our interest due
to its ability to converge to equilibrium in single-player and two-
player contexts. By harnessing the power of MCTS as an expert
guiding our RL agent, we observed a significant performance im-
provement, surpassing the outcomes achieved by utilizing each
method in isolation. Our experiments were carried out on the Atari
100k benchmark.
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1 INTRODUCTION
Reinforcement Learning (RL) is a leading field in artificial intelli-
gence, advancing our grasp of intelligent decision-making in com-
plex environments [2, 44]. Despite the remarkable progress, the
pursuit of optimizing RL algorithms remains a central focus. In this
pursuit, we turn our attention to a foundational concept within
the realm of RL. In Offline RL [30, 35], the primary objective is to
derive the best possible policy solely from a dataset originating
from an auxiliary policy, without interacting with the environment.
The prevalent idea is to align the new policy closely with the auxil-
iary policy to enhance performance. This strategy derives from the
principle that deviating from the limits of the auxiliary policy often
leads to uncertainty which leads to erroneous judgments about the
policy’s efficacy.

Our scenario diverges from this framework and pivots back to
a more classical approach where the constraints of an auxiliary
policy fade away and we once again interact with the environment.
Despite this paradigm shift, we question whether it is possible to
preserve the concept of Offline RL i.e., staying as close as possible
to an auxiliary policy to enhance performance. Considering our
lack of auxiliary policy, we inquire whether it is plausible to use an
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online algorithm proficient enough to act as our guiding reference,
and how to integrate such an expert into our RL agent’s.

In our research, we begin by analyzing the various online al-
gorithms available to serve as an expert. In the literature, there
exist algorithms that already use experts to improve their perfor-
mance. As an example, in Soft Actor-Critic (SAC), Proximal Policy
Optimization (PPO), Asynchronous Advantage Actor Critic (A3C)
[17, 18, 32, 39], the RL agent is combined with an entropy term
to facilitate exploration. This entropy, in another formulation, is a
measure of the distance between the current policy and the policy
of an expert, of which this expert happens to be a random agent.

In our work, we turn our attention to Monte Carlo Tree Search
(MCTS) [7, 45] as an expert to guide the RL agent. MCTS is a search
algorithm that obtains state-of-the-art performance in many games
and converges towards equilibriumwith one and two players.When
MCTS is employed as an expert, a significantly performance im-
provement is observed. Analyzing the data, it becomes evident
that, in the majority of cases, integrating MCTS as an expert leads
to enhanced performance, and in instances where this is not the
case, the algorithms achieve the best outcome between the two
algorithms. The combination of an RL algorithm with MCTS as an
expert leverages RL’s inherent generalization and learning capabili-
ties, while also benefiting from MCTS’s optimal online capabilities.
Additionally, we enhance our investigation by examining various
hyperparameters, particularly focusing on the extent to which we
integrate the expert’s input. Moreover, by reducing the number
of time the expert is used, we show the potential to mitigate the
overhead associated with expert guidance while preserving perfor-
mance enhancements.

In Section 2 we present the different formalism and notation used
throughout the paper. In Section 3, we present the strengths and
weaknesses of multiple online experts and explain how to integrate
the expert into the RL agent. Particularly when using MCTS as an
expert it is possible to guide the RL agent in several key notions:
the actor and the critic components within the RL algorithm. In
Section 4, we experiment with different experts on the Atari100k
benchmark. In Section 5, we present the related work, and lastly, in
Section 6, we summarize our work and future work.

2 FORMALISM AND NOTATION

2.1 Markov Decision Process
A dynamic system is typically characterized by a Markov Decision
Process (MDP), which is represented as M = (S,A,T , 𝑟 , 𝛾). Here,
S denotes the state space where 𝑠 ∈ S, A represents the action
space with 𝑎 ∈ A , T (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) signifies the transition probability
distribution governing the system dynamics, 𝑟 (𝑠 , 𝑎) stands for the
reward function, and 𝛾 ∈ (0, 1] serves as a discount factor.

https://ala2024.github.io/


Addressing an exact Markov Decision Process (MDP) can pose
significant computational demands. To alleviate this, employing
a world model [19–21, 37] proves advantageous. A world model
serves as an approximation ofM, encompassing approximations of
state representations, dynamics, and rewards. Leveraging the world
model for information retrieval not only accelerates computation
compared to exact methods but also facilitates parallel processing
of state batches, especially when computing intricate tools like N-
step bootstrapped 𝜆-returns or employing Monte Carlo Tree Search
(MCTS). This parallel processing is often executed on GPUs rather
than CPUs, thereby further enhancing computational efficiency.

2.2 Reinforcement Learning
Reinforcement learning confronts the problem of learning to control
the MDP, where the agent aims to maximize the expected cumula-
tive reward, i.e. the agent try to acquire a policy 𝜋 , which is defined
as a distribution over actions conditioned on states 𝜋 (𝑎 |𝑠 ), that
maximizes the long-term discounted cumulative reward defined as
follow :

𝜋∗ = max
𝜋
E

𝜏∼𝜋

[ T∑︁
𝑡=0

𝛾T𝑟𝑡
]

(1)

where 𝜏 = (𝑠0, 𝑎0, 𝑟0, . . . ) is a sequence of states, actions, and re-
wards generated from the current policy. To maximize the policy
𝜋 , one of the primary methods utilized is the actor-critic approach,
which involves learning a critic and an actor network. The learn-
ing can be conducted online by generating new trajectories or
by leveraging a data buffer D, which comprises past trajectories
𝜏0, 𝜏1, . . . , 𝜏𝑘−1.

2.2.1 Critic. The critic aims to estimate the value functions, i.e.
the expected cumulative rewards an agent can obtain at a state or
state-action pairs :

𝑉𝜋 (𝑠𝑡 ) = E
𝑎𝑡∼𝜋 ( · |𝑠𝑡 )

[
Q𝜋 (𝑠𝑡 , 𝑎𝑡 )

]
(2)

Q𝜋 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑡 + 𝛾 E
𝑠𝑡+1∼T(· |𝑠𝑡 ,𝑎𝑡 )

[
𝑉𝜋 (𝑠𝑡+1)

]
(3)

The loss function of the critic L𝐶
𝜃
is formulated to minimize the

disparity between the value target 𝑉𝜃 (𝑠 ) and the predicted value
𝑉𝜃 (𝑠 ) over a batch of state

L𝐶
𝜃
= E

𝑠∼D

[
L𝐶,𝑆𝑢𝑏

𝜃
(𝑠 )

]
(4)

Previous studies have emphasized the benefits of employing
cross-entropy over a discrete representation in reinforcement learn-
ing [5, 6, 14, 21, 37]. This method involves the critic to learn a
discrete weight distribution 𝑝𝜃 = 𝑝1, ..., 𝑝𝐵 ∈ 𝑅𝐵 instead of learning
the mean of the distribution, and a function𝑦 () that convert a target
value into another weight distribution of size 𝐵. This leads to the
following sub-loss for the critic:

L𝐶,𝑆𝑢𝑏

𝜃
(𝑠 ) = 𝑦 (𝑉𝜃 (𝑠 ))𝑇 log 𝑝𝜃 (5)

The value target often corresponds to the Q-Value, yet, to en-
hance stability, an alternative approach involves using the N-step
bootstrapped 𝜆-returns [21, 44]. These returns incorporate pre-
dicted rewards and values [38, 44] over a depth of N, which allows
to achieve improved stability of convergence, composed as follows:

{
𝑉𝜃 (𝑠𝑡 ) if N = 0
𝑟𝑡+𝛾

(
(1 − 𝜆)𝑉𝜃 (𝑠𝑡+1) + 𝜆𝑉

𝜆,N−1
𝜃

(𝑠𝑡+1)
)

if N > 0
(6)

2.2.2 Actor. The actor’s loss function, denoted as L𝐴
𝜃
, is trained

to maximize the batch of actions that lead to states that maximize
the critic output.

L𝐴
𝜃
= E

𝑠∼D

[
L𝐴,𝑆𝑢𝑏

𝜃
(𝑠 )

]
(7)

In the context of Atari Benchmarks, as observed in [19], authors
have found it more advantageous to employ the Reinforce [46]
algorithm, which is the approach adopted in our work as well.
Reinforce maximizes the actor’s probability of its own sampled
actions weighted by the values of those actions. One can reduce
the variance of this estimator by subtracting the state value as a
baseline. Therefore, we obtain the following loss for the actor:

L𝐴,𝑆𝑢𝑏

𝜃
(𝑠 ) = E

𝑎∼𝜋
𝜃
( · |𝑠 )

[
− ln𝜋

𝜃
(𝑎 |𝑠 )

(
𝑉𝜃 (𝑠 ) −𝑉𝜃 (𝑠 )

𝑆𝜃

)]
(8)

where 𝑆𝜃 refers to the normalization used to stabilize the scale of
returns. The normalization is carried out using an exponentially
decaying average, is robust to outliers by taking the returns from the
5𝑡ℎ to the 95𝑡ℎ batch percentile, and reduces large returns without
increasing small returns.

𝑆𝜃 = max
(
1, Per95

(
𝑉𝜃 (·)

)
− Per5

(
𝑉𝜃 (·)

) )
(9)

2.3 Behavior Cloning
Behavior Cloning (BC) [23] is a method employed in RL where the
objective is to develop an agent capable of executing tasks closely
resembling those of the demonstrator. In this approach, the agent’s
policy, denoted as 𝜋

𝐵𝐶
, undergoes a supervised learning process to

closely replicate the actions present in the dataset.

𝜋𝐵𝐶 = max
𝜋

E
(𝑎,𝑠 )∼D

[
log𝜋 (𝑎 |𝑠 )

]
(10)

2.4 Search Algorithm
Search algorithms are algorithms that aim to explore the game tree
efficiently to make informed decisions that maximize the chances
of winning. To do this, search algorithms are given a larger bugdet
in the given state that they wish to solve, and during the bugdet
they efficiently explore the different possible paths of action, thus
obtaining a better estimate of the value function and a better policy
in the given state.

Search algorithms encompass a diverse range of techniques
tailored to handle various game scenarios, from single-player to
multi-player, and from perfect to imperfect information settings. In
perfect information games like Chess or Go, where players have
complete knowledge of the game state, algorithms like Minimax
with Alpha-Beta Pruning [12, 27] or MCTS [7, 45] are widely em-
ployed. Conversely, imperfect information games like Poker or
Skat pose additional challenges due to hidden information. In such
cases, techniques like Perfect Information Monte Carlo [31], Infor-
mation Set Monte Carlo Tree Search [13], or Counterfactual Regret
Minimization based method [33] are utilized.



2.4.1 Monte Carlo Tree Search. MCTS is a tree search algorithm,
for perfect information game that converges towards equilibrium
with one and two players. At each time step of the budget, MCTS
(i) selects the best path of node, (ii) expands the tree by adding a
child node, (iii) estimates the child node, (iv) backpropagates the
result obtained through the nodes chosen. At the end of the budget,
the algorithms return the distribution of actions 𝜋

𝑀𝐶𝑇𝑆
that has

been visited, and the value 𝑉𝑀𝐶𝑇𝑆 obtained when running MCTS.
Starting from AlphaGo/AlphaZero (AZ) series [41–43], MCTS

has been combined with neural networks to enhance performance
where an actor network is used to help the search, and a critic
network is used to give a better estimate of the new state. More
specifically, when selecting the best path of node, MCTS employs
PUCT [41], i.e. Upper Confident Bound[3] on tree [37] with deep
neural network [42].

Q (𝑠 , 𝑎) + 𝜋
𝜃
(𝑎 |𝑠 )

√︁
N (𝑠 )

1 + N (𝑠 , 𝑎)

(
𝑐1 + log(N (𝑠 ) + 𝑐2 + 1

𝑐2
)
)

(11)

where 𝜋
𝜃
(𝑎 |𝑠 ) is the neural network policy assisting MCTS in

prioritizing exploration of promising branches, it can perturbed
by noise to facilitate exploration. Additionally, N (𝑠 ) and N (𝑠 , 𝑎)
denotes the number of times state 𝑠 the pair state-action 𝑠 , 𝑎 have
been visited, encouraging the search to explore less-visited nodes
compared to other siblings. Finally, 𝑐1 and 𝑐2 are variables that
control the balance between exploration and exploitation.

The sub-actor loss L𝐴,𝑆𝑢𝑏

𝜃
(𝑠 ) is defined as the error between the

actor policy and the search policy, and the sub-critic loss L𝐶,𝑆𝑢𝑏

𝜃
(𝑠 )

is defined as the error between the critic value and the search value.

L𝐶,𝑆𝑢𝑏

𝜃
(𝑠 ) = 𝑦 (𝑉𝑀𝐶𝑇𝑆 (𝑠 ))𝑇 log𝑝𝜃 (12)

L𝐴,𝑆𝑢𝑏

𝜃
(𝑠 ) = 𝜋𝑀𝐶𝑇𝑆 (·|𝑠 )

𝑇 log𝜋
𝜃
(·|𝑠 ) (13)

3 EXPERT
As mentioned in the introduction, our aim is to find an online

algorithm that can guide our RL agent to improve its performance.
In this objective, we will first investigate the advantages and dis-
advantages of different experts, and then we will explain how to
integrate the expert into the RL agent.

3.1 Analysis of the various experts
To thoroughly assess the efficacy of different experts and determine
their suitability for guiding the reinforcement learning algorithm,
we conducted a comprehensive evaluation based on multiple crite-
ria. The gathered information is summarized in Table 1. The experts
discuted are detailed below and are identified as follows ‘Human’,
‘Random’, ‘BC’, and ‘MCTS’.

The criteria take into account their capacity to be available in
each state-action, if they are relevant for exploring/performance,
their online and offline cost, if they can reduce the extrapolation
error, and if they are time dependent. Time-dependent algorithms
are those that require learning before they are operational, for
example, learning a neural network. Extrapolation error [16] is an
error present in Off-Policy and Offline problems that arise when
the target selects actions rarely present in the dataset, affecting the
accuracy of the value estimate.

3.1.1 Human. The use of experts is often associated with the use of
human experts, whether for learning to drive [22, 47], for convers-
ing with other humans [24] or even for trying to play as much as a
human [4]. It is a necessity in scenarios where real-time interaction
is either infeasible or the risk is too significant. The initial stages of
a game present a valuable opportunity for the incorporation of hu-
man policies. During this phase, RL policies may prove ineffective,
whereas human policies are directly applicable and advantageous.
Unfortunately, the data are available in a restricted subset of all
state-action, are expensive and complex to obtain.

3.1.2 Random. In algorithms like SAC [17] and several state-of-
the-art counterparts [21], the RL agent is coupled with an entropy
term to enhance exploration. In an alternative perspective, this
entropy is a measure of the distance between the current policy
𝜋 and the policy of an expert, of which this expert happens to
be a random agent. The choice of a random agent as an expert
holds distinct advantages, particularly when exploration of the
state space is desired, its minimal computational cost and immediate
availability make it an ideal choice in many scenarios. However,
reservations emerged when considering the utility of such an expert
in enhancing overall performance.

3.1.3 Behavior Cloning. In Offline RL, a common strategy involves
approximating closeness to the behavioral policy that underlies
the D dataset. Achieving this requires an initial step of estimating
the behavioral policy by behavioral cloning. This estimate of the
behavior policy is then used as a guide for RL agents. This method
yields a significant advantage by minimizing extrapolation errors.
By aligning the new policy closely with the behavior policy, the
algorithm performs actions for which accurate approximations
exist, reducing uncertainties of the new policy. However, several
considerations come into play. Firstly, the expert is not inherently
well-suited for exploration or enhancing performance. Secondly,
the data is confined to a subspace of the state space and depends
on the amount of interaction.

3.1.4 Search Algorithm. Leveraging search algorithm as an expert
stands as a reasonable choice given its constant availability in each
state and its relatively low cost compared to human expertise. Partic-
ularly, in contrast to employing either a random expert or an expert
relying solely on past data, search-based algorithms holds greater
potential for performance enhancement due to their abilities to
explore and converge toward the optimal solution. It is noteworthy,
however, that while search algorithms are less expensive than hu-
man expertise, it may incur higher costs than alternative methods.
Additionally, under constrained resource budgets or insufficient
training of neural networks, search algorithms may encounter chal-
lenges in converging toward the optimal solution.

3.2 How to integrate an expert into the RL agent
Offline RL [30, 35] domain offers diverse methods for aligning one
policy with another, contingent on the degree of closeness desired
between them. Possible methods include value penalty where the
penalty term is incorporated into the reward function or policy
regularization where the penalty term is incorporated after the
calculation of the loss. In our work, we have chosen to implement
regularization techniques.



Table 1: Advantage and Inconvenient of using each expert.

Criteria
Expert

𝜋
𝑅𝑎𝑛𝑑𝑜𝑚

𝜋
𝐵𝐶

𝜋𝜃
𝐵𝐶

𝜋
𝑀𝐶𝑇𝑆

𝜋
𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜

𝜋
𝐻𝑢𝑚𝑎𝑛

Available at each (𝑠 ,𝑎 ) Yes No Yes Yes Yes No
Relevant for exploration Yes No No Yes∗ Yes∗ Yes∗
Relevant for performance No No No Yes Yes Yes
Reduce extrapolation error No Yes Yes No No No
Performance is not time-dependent Yes No No Yes No Yes
Online Cost Low Low Low Medium Medium High
Offline Cost Low Low Medium Low Medium High

Yes∗ implies that the algorithm is relevant to improve exploration, but only if the action produced is also relevant to improve
performance.

Our approach to incorporating the expert is largely inspired
by the work of Shi et al. [40], which, to our knowledge, stands
as the sole study employing both policy and critic information to
guide the search process. This choice is based on our ability to
leverage the information provided by MCTS. Specifically, we utilize
the probability distribution 𝜋

𝑀𝐶𝑇𝑆
to influence the actor policy

and the state value 𝑉𝑀𝐶𝑇𝑆 to shape the critic.
In the subsequent discussion, we adopt general notations that

consider the possibility of multiple experts, each exerting varying
degrees of influence on the decision-making process. Ideally, we
aim to incorporate weights based on the games and the current
state. However, as our work is novel in this direction, we initially
experiment with a single expert (|E| = 1) and uniform weights
across all states (∀𝑠 , 𝜆𝐶E𝑖 (𝑠 ) = 𝜆𝐶E𝑖 , ∀𝜆

𝐴
E𝑖 (𝑠 ) = 𝜆𝐴E𝑖 ). Throughout our

discussion, E𝑖 represents the 𝑖th expert algorithm, and E = {E𝑖 }𝑖∈N
denotes the set of expert algorithms.

3.2.1 Expert Critic Incorporation. By integrating the expert into the
critic, our objective is to refine the estimation of the value function
by considering the insights provided by the expert. Incorporating a
penalty into the critic using value regularization amounts to change
from Equation (4) to equation the following new loss function L𝐶

𝜃
:

E
𝑠∼D

L𝐶,𝑆𝑢𝑏

𝜃
(𝑠 )+

∑︁

E𝒊∈E
𝝀𝑪

E𝒊
(𝒔)F𝑪

E𝒊
(𝑽𝜽 (𝒔), 𝑽̄E𝒊 (𝒔))

 (14)

where F𝐶
E𝑖 (, ) is the penalty term between the target expert 𝑉E𝑖 (𝑠 )

and the predicted value, and 𝜆𝐶E𝑖 (𝑠 ) is the function weight used
for regularizing the penalty term. The penalty term can be any
function that evaluates the disparity, and in particular, the same
function as the critic’s sub loss. Similarly, to enhance stability, one
can compute the N-step bootstrapped 𝜆-returns on the target value.

3.2.2 Expert Actor Incorporation. For incorporating the expert on
the actor, we have been using both the expert guidance from the ac-
tor and the critic. The use of the critic allows us to increase guidance
when states are promising or have high potential. Incorporating a
penalty into the actor using regularization amounts to change from

Equation (7) to the following loss function of the actor L𝐴
𝜃
:

E
𝑠∼D


L𝐴,𝑆𝑢𝑏

𝜃
(𝑠 )

E

[

|L
𝑨,𝑺𝒖𝒃
𝜽 (·) |

]

+

∑︁

E𝒊∈E
𝜶𝑨

E𝒊
(𝒔)F𝑨

E𝒊
(𝝅𝜽 (·|𝒔), 𝝅E𝒊

(·|𝒔))


(15)

where F𝐴
E𝑖 (, ) represents the penalty term between the actor net-

work and the target policy, and 𝛼𝐴E𝑖 (𝑠 ) is a function determining
the penalty weight based on the current state. The penalty term
can be any function that evaluates the disparity, yet, in Offline RL,
the penalty term is often the KL divergence [48].

The loss of the actor network significantly depends on the scale
of the internal loss values. To address this, we normalize L𝐴,𝑆𝑢𝑏

𝜃
(𝑠 )

by the average absolute value of L𝐴,𝑆𝑢𝑏

𝜃
(·). This mean term is

estimated over mini-batches and is solely used for scaling purposes.
The weight 𝛼𝐴E𝑖 (𝑠 ) ∈ [𝜆𝐴E𝑖 (𝑠 ), 𝜆

𝐴
E𝑖 (𝑠 ) ·𝜆

𝑀𝑎𝑥
E𝑖 ] is a function that serves

to emphasize the increased penalty on high-quality state i.e., more
weight is given to states that perform better than the target, which
results in more attention toward the policy given by the expert. It
is calculated as follows:

𝜆𝐴E𝑖 (𝑠 ) · Clip
[
exp

(
𝜏E𝑖

𝑉E𝑖 (𝑠 ) −𝑉𝜃 (𝑠 )
𝑆E𝑖

)
, (1, 𝜆𝑀𝑎𝑥

E𝑖 )
]

(16)

In this equation, the state’s quality is assessed through the term
𝑉E𝑖 (𝑠 ) − 𝑉𝜃 (𝑠 ) normalized by 𝑆E𝑖 . The normalization is carried
out using an exponentially decaying average, robust to outliers by
taking the returns from the 5𝑡ℎ to the 95𝑡ℎ batch percentile, and
reduces large returns without increasing small returns.

𝑆E𝑖 = max
(
1, Per95

(
𝑉E𝑖 (·)

)
− Per5

(
𝑉E𝑖 (·)

) )
(17)

4 EXPERIMENTATION

4.1 Experimental Information
In the following, we incorporate several strategies outlined from [21,
37, 49], notably aimed at enhancing stability and generalization in
the context of our benchmarks.



4.1.1 Benchmarks. Atari 100k [25] serves as a comprehensive bench-
mark comprising 26 Atari games, providing a diverse range of
challenges to assess various algorithms’ performance. In this bench-
mark, agents train for 100k steps, equivalent to 400k frames (con-
sidering a frameskip of 4). Each block of 100k steps approximately
aligns with 2 hours of real-time gameplay per environment.

4.1.2 Algorithms. The algorithms used are namely (i) AlphaZero
(AZ) [42]; (ii) A2C (Advantage Actor-Critic) [32]; (iii) A2C with
random action as an expert, noted as A2C-Rand (similar to SAC);
(iv) A2C with behavior cloning as an expert, noted as A2C-BC; (v)
A2C agent with MCTS as an expert, noted as A2C-AZ or A2C-AZ*
where A2C-AZ is a general version where the hyperparameter 𝜆𝐴
is fixed for all games and A2C-AZ* is a fine-tuned version where
the 𝜆𝐴 if tailored for each game.

In our study, we employed A2C as our chosen RL algorithm;
however, it’s important to note that our implementation is not re-
stricted to this specific algorithm. Numerous other RL algorithms
could have been explored as alternatives. Likewise, although we
selected MCTS for our search algorithm, there are numerous other
search algorithms that could have been viable options for our ex-
perimentation.

4.1.3 Actor/Critic. All the algorithms use a critic and an actor
network, composed of a two layered MLP network of 512 hidden
units. As defined in the introduction, the critic loss sub L𝐶,𝑆𝑢𝑏

𝜃
()

uses a cross-entropy based on a discrete representation [21, 37]
and the actor loss sub L𝐴,𝑆𝑢𝑏

𝜃
() uses reinforce with a advantage

baseline to reduce the variance. The distance function F𝐴 (, ) used
for the actor is a KL-divergence function and the distance function
F𝐶 (, ) used for the critic is a cross-entropy. The weight of the
expert penalty 𝜆𝐴 is fixed at 0.08 for random and behavior cloning,
and unless otherwise stated, set at 0.7 for MCTS. For A2C-AZ, the
weight for the critic is fixed at 0.05. For enhancing stability, the
expert value target 𝑉E𝑖 () and the value target 𝑉𝜃 () use the N-step
bootstrapped 𝜆-returns.

4.1.4 Monte Carlo Tree Search. A2C-AZ utilizes the actor and
critic networks of the A2C agent, ensuring that it does not devi-
ate significantly from it. Our implementation of MCTS in A2C-AZ
and AlphaZero is built on previous famous MCTS implementa-
tions [37, 41, 42, 49]. It uses a search budget of 50, PUCT in the
selection and dirichlet noise distribution to help explore. However,
three differences should be noted (i) we do not use Re-Analyse; (ii)
we do not use prioritized experience replay [36]; (iii) we do not use
the search algorithm in the test phase. These differences were made
in order to effectively compare the different algorithms.

4.1.5 Metrics. We report the raw performance on each game, the
human normalized score, as well as the Interquartile Mean (IQM)
and Optimality Gap. The IQM and the Optimality Gap are metrics
recommended for Atari100K benchmarks [1], where the authors
recommend using IQM instead of the Median, and Optimality Gap
instead of Mean, as both methods being more robust. IQM calcu-
lates the average over the data, removing the top and bottom 25%.
Optimality Gap computes the amount by which the algorithm fails
to meet a minimum score. A higher score is better for the IQM and
a lower score is better for the optimality gap.

Figure 1: Aggregate performance. Shaded area shows 95%
stratified bootstrap confidence interval.

4.1.6 Other. Each agent uses a single environment instance with
a single NVIDIA V100 GPU. Each algorithm is run using 5 seeds, we
evaluated performance every 10k training steps with 10 indepen-
dant run of the game. To mitigate training expenses, we conducted
our experiments bu using a world model. We employed pretrained
weights from the Dreamer algorithm [21], a state-of-the-art model-
based technique trained over 50, 000k steps. Theworldmodel is used
to compute the N-step bootstrapped 𝜆-returns for A2C algorithms
and facilitating MCTS in A2C-AZ and AlphaZero. Additionally,
to enhance cost-effectiveness and stability, we restricted our ex-
perimentation to 21 out of 26 games, excluding those where the
world model demonstrated poorer performance in terms of mean
human-normalized scores.

4.2 Experiments
Initially, we will look at the overall impact of the various algorithms
and experts. Subsequently, we narrow our focus on MCTS expert,
analysing the experiments in greater detail. Finally, we analyze the
impact of the expert’s weight, by testing several weights, and trying
to observe the impact when the expert is called less often.

4.2.1 Overall analysis. In Figure 1, we observe the overall perfor-
mance on the IQM and Optimality Gap metrics. We observed that
using AZ expert allows A2C agents to obtain better performances
on both metrics. More precisely, the A2C-AZ with fixed weight
outperforms the A2C agent by more than 0.3 on the IQM and 0.1 on
the Optimality Gap. As expected, fine-tuning the weight provides
better performance, IQM increases from 1.3 to 1.5 and goes from
0.28 to 0.24 for the Optimality Gap.

4.2.2 MCTS as an expert. In Figure 2, we observe the percentage
improvement of A2C-AZ*/A2C-AZ over AlphaZero and A2C, and



(a) X is A2C-AZ*, Y is A2C agent (b) X is A2C-AZ, Y is A2C agent (c) X is AlphaZero, Y is A2C agent

(d) X is A2C-AZ*, Y is AlphaZero (e) X is A2C-AZ, Y is AlphaZero

Figure 2: Percentage improvement of algorithm X compared to the algorithm Y on Atari100k Benchmarks. Improvement is
measured as a percentage of mean human-normalized return.

AlphaZero over A2C. In Figure 3, we present a series of learning
curves for the A2C-AZ,A2C and AlphaZero, which serve as the
basis for our subsequent analysis.

We begin our analysis with AlphaZero and A2C agent alone.
Each figure represents distinct scenarios: one where AlphaZero
outperformsA2C (Figure 3b) and reversely (Figure 3a). These figures
provide an initial glimpse into the broader picture. More generally,
A2C demonstrates superior performance in 12 games, AlphaZero
surpasses A2C in 8 games, and 1 equivalent. Despite A2C’s general
advantage, it is essential to highlight instances where A2C falls
short, indicating the potential benefits of integrating AZ as experts.

When considering the incorporation of AZ as an expert, several
critical questions arise: can this elevate the agent’s performance to
at least match the best of the two individual agents? Is it possible to
create an agent superior to the best individual performer, or might
utilizing the expert lead to a weakened agent?

In our analysis across various games, we find that 12/17 games
show performance improvements, 4/2 show equivalent, when using
the combined approach (A2C-AZ/A2C-AZ*) compared to the A2C
agent alone. Interestingly, in the subset of 8 gameswhere AlphaZero
outperformed A2C in isolation, integrating AZ as an expert resulted
in superior performance in 6/7 of those instances.

Although not explicitly visible in the figure, our observations
indicate that the combined algorithm outperforms both individually

9/11 times in the majority of cases, achieves the performance of
the better of the two methods(7/9 times), is lower than the best but
bounded by the two algorithms 4/1 times, and lower performance
than both in only 1/0 instance.

4.2.3 Hyperparameters. In Figure 4, we observe the impact of the
weight 𝜆𝐴 on the performance. To do so, we compare multiple fixed
weights 𝜆𝐴 ranging from [0.1, 0.3, 0.5, 0.7], and the optimal weight
that take the best 𝜆𝐴 for each game. We denote A2C-AZ-X where
X denoted the weight used i.e., A2C-AZ-0.3 uses the MCTS expert
with a weight of 0.3. As can be observed, the best fixed 𝜆𝐴 find
is 0.7 with a IQM of 1.25 and Optimality Gap of 0.28. As one can
expected, reducing too much the weight leads to performances that
closely resemble those of A2C.

4.2.4 Cost of expert. In practice, there are a number of MCTS
methods that can significantly reduce the cost of it, i.e. by using
batch MCTS [8], parallelization (leaf [9] / root [11] / tree [10]). In
addition, many implementation often use several large computa-
tional resources to better distribute the workload, as an example,
the basic version of AlphaGo uses 40 search threads, 48 CPUs, and
8 GPUs.

In the following experiment, we also show another way to reduce
the cost of adding an expert. In addition, the idea is quite natural
in our situation. Presently, the expert is executed at every iteration;
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Figure 3: Learning curves on 2 different game of Atari100k
benchmarks with 3 algorithms presented. The shaded area

shows 95% confidence interval.

Table 2: Runtime on Atari100k Benchmarks.

Algorithm A2C A2C-AZ-1 A2C-AZ-3 A2C-AZ-5

Time 4H 18H 8H30 6h30

however, our ultimate goal is to avoid deploying the expert in every
encountered situation. Our aim is to activate the expert only when
deemed necessary—specifically, in scenarios where our RL agent
faces challenges or when the expert is known to excel.

In Figure 5, we observe the impact of using less often the expert
i.e., instead of using the expert at each iteration, we use it at every
N iterations. We introduce the notation of A2C-AZ-X where X
indicates how often the expert is called i.e., A2C-AZ-3 uses the
MCTS expert every 3 training step. Additionally, we observe in
Table 2, the overhead cost of using AZ as an expert according to N.
As observed, we can reduce the overhead of using MCTS but while
maintaining the improvement performance.

Figure 4: Aggregate performance metrics according to the
weight. The shaded area shows 95% stratified bootstrap

confidence interval.

Figure 5: Aggregate performance metrics according to the
weight when reducing the number of call to the expert. The

shaded area shows 95% stratified bootstrap confidence
interval.

5 RELATEDWORK

5.1 Offline Reinforcement Learning
Our work is strongly linked to the field of Offline RL as inspired
by one of the key methods in the field. And therefore, many of



the methods available can be applied in our situation, especially,
offline RL methods generally rely on staying close to the data. De-
pending on how this proximity is implemented, there are several
approaches to achieve this goal, including estimating the behavior
policy and regularization to closely align with it [16, 24], ensuring
that the learning of the policy is in-distribution [15, 34], or recently,
estimating the Q-value of the behavior policy and regularization
for proximity toward it [40].

Within the realm of regularization methods, there exist several
avenues to explore. These include penalties applied within the
reward function [48] or regularization penalties applied after its
computation of the loss [28, 29]. Additionally, the calculation of
the penalty is accomplished by using various functions, including
KL divergence, Maximum Mean Discrepancy [48], or even Fisher
information [28].

5.2 Monte Carlo Tree Search
MCTS [7, 45] stands as a state-of-the-art algorithm that has sig-
nificantly enhanced performance and tackled complex problems.
In recent years, MCTS has been integrated with offline neural net-
works to boost its performance [41–43], however, in most scenarios,
neural networks are employed to predict the outcomes generated
by MCTS.

To our knowledge, no prior work has attempted to utilize MCTS
as a guiding expert while retaining the RL module. The closest
related study we found is [26], where the authors use A3C with K
workers being MCTS among Nworkers, this integration notably led
to performance improvements. Nonetheless, unlike their approach,
we employ MCTS as an expert in each state and take into account
the value returned by MCTS to enhance learning.

6 CONCLUSION

In this paper, we study the influence of leveraging online al-
gorithms as expert guides to enhance the learning process of RL
algorithms. Inspired by techniques in Offline RL, we adapt these
methodologies to the context of using an online expert. Our ap-
proach involves regularising the loss functions for both the actor
and the critic to enforce our loss to take into account the informa-
tion given by the expert.

Among the array of online algorithms explored from existing
literature, our focus lies on Monte Carlo Tree Search (MCTS), a
cutting-edge planning algorithm renowned for its convergence
capabilities in both single-player and two-player scenarios. Notably,
employing MCTS as an expert yields superior results compared
to employing either of the two methods in isolation. Moreover,
performance gains can be extended with the incorporation of an
adaptive weight, contributing to enhanced outcomeswhile ensuring
cost-effectiveness. Our study is based on the Atari100k benchmarks.

In the future, there exist promising avenues for further explo-
ration. Experimenting with diverse hyperparameters, such as alter-
native distance functions, different planning algorithms or different
reinforcement learning algorithms, could illuminate nuanced in-
sights. Additionally, extending our experiments to encompass a
broader spectrum of benchmarks holds potential for expanding the
applicability and robustness of our approach.
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