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ABSTRACT
This paper presents an algorithm for designing an environment
where multiple autonomous agents learn to behave aligned with a
moral value while pursuing their individual objectives. Based on the
Multi-Objective Reinforcement Learning and Deep Reinforcement
Learning literature, our algorithm represents an extension of the
Multi-Agent Ethical Embedding Process (MAEEP), a theoretically
groundedmethod that can be just applied to small problems.We call
our method Approximate Multi-Agent Ethical Embedding Process
(AMAEEP) and empirically evaluate it in an ethical extension of the
gathering game that considers the value of beneficence. Although
this environment is much larger than the one used to illustrate the
application of the original MAEEP, our method succeeds in dealing
with the complexity increase.

1 INTRODUCTION
Autonomous artificial agents are becoming increasingly preva-
lent [21, 34, 38]. However, as we delegate more tasks –such as
autonomous driving or healthcare– to artificial agents [9, 16, 19],
we must also be aware of the possible risks or negative ethical
effects that may arise, as recognised by the proposed Artificial Intel-
ligence Act [14]. Thus, it is imperative to develop systems to ensure
that these agents will always behave in alignment with human val-
ues [15, 31, 33]. In fact, the problem of value alignment is especially
crucial when multiple artificial agents are deployed simultaneously.

In cases where agents must tackle multi-agent decision-making
problems, a common approach is to let them learn to behave with re-
inforcement learning. Multi-agent reinforcement learning (MARL)
algorithms have found application in diverse domains, from game
playing to autonomous driving and conversational agents [11], ex-
hibiting a notable capacity for acquiring proficiency in intricate
tasks. It is no surprise then, that works focusing on applying rein-
forcement learning to ensure value alignment have recently begun
to appear from the fields of Machine Ethics and AI Safety [7, 24].
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These fields tackle the problem from different perspectives. The
work on AI Safety aims to guarantee that any deployed agent will
not cause harm to itself nor the environment (including real hu-
mans) [17, 18]. AI Safety techniques both deal with preventing
harmful situations during training [5, 13] and after training [2, 6, 40].
While guaranteeing that agents do not perform harmful actions is
critical to value alignment, we argue that it is insufficient. As Gabriel
argued in [15], behaving value-aligned also implies the proactive
role of performing morally good actions such as being kind or al-
truistic. Meanwhile, the work on Machine Ethics aims to include
an ethical dimension that agents must consider while deployed.
Following the basics of reinforcement learning, their approach con-
sists in providing extrinsic ethical rewards to the agents to guide
them towards a value-aligned behaviour (e.g., [1, 8, 26, 28, 29, 37]).
Yet, the majority of Machine Ethics literature is still working on
single-agent problems, and, to the best of our knowledge, only
Rodriguez-Soto et al. in [30] have started tackling the problem of
guaranteeing value alignment for multi-agent systems with rein-
forcement learning.

In [30], Rodriguez-Soto et al. propose an Ethical Embedding al-
gorithm that computes how to set ethical rewards necessary for
guaranteeing the learning of an ethically-aligned behaviour for all
agents within a multi-agent system. Although their algorithm is
theoretically guaranteed to succeed, it is based upon strict theoreti-
cal assumptions, such as that all agents have full observability of
the whole environment or that an optimal behaviour exists for ev-
ery agent independently of what the other agents are doing. These
assumptions are hardly true in large and more realistic environ-
ments than those studied in [30]. Moreover, the ethical embedding
algorithm requires reinforcement learning algorithms with con-
vergence properties to maintain its theoretical guarantees. To our
understanding, no deep reinforcement learning algorithm preserves
such guarantees. Thus, even if we found a large environment for
which such theoretical assumptions held, the computational cost
of computing an ethical embedding without deep reinforcement
learning would make it unfeasible in practice.

Against this background, the first objective of this work is to
design an approximate version of the Ethical Embedding algorithm
that enables the design of ethical environments under more realistic
assumptions: large environments and partial observability. For this
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purpose, we present a novel method to compute the ethical embed-
ding in multi-agent systems using Deep Reinforcement Learning
(DRL). This enables its use in large environments involving more
agents, large state space, and partial observability. In contrast to
the original algorithm in Ethical Embedding, our approach cannot
ensure that the environment is perfectly ethical. Therefore, a second
objective of this research is to provide a quality measure for the
value alignment of the resulting environment.

In response to these objectives, the primary contribution of this
paper is the Approximate Multi-Agent Ethical Embedding Process
(AMAEEP) algorithm, an extension of the original Multi-Agent
Ethical Embedding Process (MAEEP) [30]. The AMAEEP takes a
multi-objective environment where value alignment is represented
as an objective independent of the environment’s main objective.
Then, it outputs a single-objective environment where all agents are
incentivised to learn to behave ethically or approximately ethically.
To account for that approximation, we name the resulting environ-
ment an 𝜖-ethical environment. This loss of guarantees comes from
moving from classical reinforcement learning algorithms to deep
Reinforcement Learning algorithms, which increases the scalability
of the approach but loses the convergence properties. However, this
work shows how this approximation generates ethical joint policies
for the Ethical Gathering Game environment [30]. Notably, we have
achieved them using the original environment map size [19, 23],
including partial observability and up to five agents, rather than
the reduced version used in [30]. This illustrates that DRL methods
can be used to extend the original MAEEP algorithm, achieving a
major improvement in scalability.

In what follows, Section 2 presents the necessary background
in reinforcement learning and ethical environment design. Then,
Section 3 details our algorithm for approximately building ethi-
cal environments, the approximate multi-agent ethical embedding
process. Section 4 details the empirical analysis of our algorithm.
Finally, Section 5 concludes and sets paths to future work.

2 BACKGROUND
This section is devoted to introducing the necessary background
and related work in multi-agent reinforcement learning and envi-
ronment design of ethical environments.

2.1 Multi-agent reinforcement learning
The Multi-agent reinforcement learning literature formally defines
a multi-agent environment as a Markov game (MG) [4]. An MG
characterises an environment in which multiple agents can repeat-
edly act upon it to modify it, and immediately, each one receives a
reward signal after each action. Formally:

Definition 2.1 (Markov game). A (finite) Markov game of 𝑛 agents
is defined as a tupleM = ⟨𝑆,𝐴𝑖=1,· · · ,𝑛, 𝑅𝑖=1,· · · ,𝑛,𝑇 ,𝛾⟩ containing
two sets, two functions, and a constant. Here, 𝑆 is a finite set of
states, and 𝐴𝑖 represents the set of actions available to agent 𝑖 . The
transition function 𝑇 : 𝑆 × 𝐴1 × · · · × 𝐴𝑛 × 𝑆 → [0, 1] defines
the probability of moving from state 𝑠 to the next state 𝑠′, given
the joint action 𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩ of all agents. For each agent 𝑖 , the
reward function 𝑅𝑖 : 𝑆×𝐴1×· · ·×𝐴𝑛×𝑆 → R specifies the received
reward 𝑟 𝑖 after applying joint action 𝑎 to state 𝑠 and transitioning
to state 𝑠′. Finally, 𝛾 ∈ (0, 1] is the discount factor.

In reinforcement learning, an agent’s behaviour is called a policy.
Formally, the policy 𝜋𝑖 : 𝑆 → 𝐴 of an agent 𝑖 provides an action
𝑎 that the agent will perform for each possible state 𝑠 of the envi-
ronment. Each agent 𝑖 aims to learn the policy 𝜋𝑖 that maximises
its expected discounted accumulation of rewards, according to its
associated reward function 𝑅𝑖 , and the discount factor 𝛾 . We refer
to the joint policy of all agents as 𝜋 = ⟨𝜋1, . . . , 𝜋𝑛⟩.

In many cases, a joint policy that maximises the accumulation of
rewards for all agents does not exist. For that reason, following the
game theory literature, the typical goal of agents in a multi-agent
reinforcement learning environment is to learn a Nash equilibrium.
Nash equilibria (NE) in MARL are stable joint policies in which no
agent can unilaterally improve its current accumulation of rewards.
Formally:

Definition 2.2 (Nash equilibrium). Given a Markov GameM, a
Nash equilibrium is a joint policy ⟨𝜋𝑖∗, 𝜋−𝑖∗ ⟩ satisfying that for every
agent 𝑖 and every state 𝑠 in 𝑆 , the policy 𝜋𝑖∗ of agent 𝑖 is a best-
response against 𝜋−𝑖∗ (𝑠), that is, it maximises the accumulation of
rewards against the joint policy 𝜋−𝑖∗ :

𝑉 𝑖

⟨𝜋𝑖
∗,𝜋
−𝑖
∗ ⟩
(𝑠) ≥ 𝑉 𝑖

⟨𝜋𝑖 ,𝜋−𝑖∗ ⟩
(𝑠), for every 𝜋𝑖and ∀𝑠 ∈ 𝑆, (1)

where 𝑉 𝑖
𝜋 (𝑠) is the expected discounted accumulation of rewards

𝐸𝜋 [
∑∞
𝑖=0 𝛾

𝑖𝑟 𝑖 ] of agent 𝑖 if all agents follow the joint policy 𝜋 =

⟨𝜋𝑖 , 𝜋−𝑖 ⟩.

The notion of a Nash equilibrium can be relaxed by including
an 𝜖 > 0 in Eq. 1. When the benefit for each agent 𝑖 of unilaterally
modifying its policy 𝜋𝑖∗ is at most 𝜖 > 0, we say that agents are in
an 𝜖-Nash equilibrium. Formally:

Definition 2.3 (𝑒𝑝𝑠𝑖𝑙𝑜𝑛-Nash equilibrium). Given a Markov Game
M, and an 𝜖 > 0, an 𝜖-Nash equilibrium is a joint policy ⟨𝜋𝑖∗, 𝜋−𝑖∗ ⟩
satisfying that for every agent 𝑖 and every state 𝑠 in 𝑆 , the policy 𝜋𝑖∗
of agent 𝑖 is a best-response against 𝜋−𝑖 (𝑠)∗, that is, it maximises
the accumulation of rewards against the joint policy 𝜋−𝑖∗ :

𝑉 𝑖

⟨𝜋𝑖
∗,𝜋
−𝑖
∗ ,⟩ (𝑠) ≥ 𝑉

𝑖

⟨𝜋𝑖 ,𝜋𝑖
∗ ⟩
(𝑠) − 𝜖 for every 𝜋𝑖and ∀𝑠 ∈ 𝑆. (2)

In this work, we use the terms 𝜖-Nash equilibrium and near Nash
equilibrium indistinctly.

One of the primary challenges of learning either a Nash equilib-
rium or an 𝜖-Nash equilibrium is that each agent has to consider
the other agents’ policies to converge to an equilibrium. For that
reason, in this work, we study a particular subset of Nash Equilib-
ria which allows each agent to independently converge: dominant
equilibria (DE) [25]. A dominant equilibrium exists if each agent
has at least one dominant policy, that is, a policy that is the best
response against all possible joint policies of the rest of the agents.
Formally:

Definition 2.4 (Dominant policy). Given a Markov gameM, the
policy 𝜋𝑖∗ of an agent 𝑖 is dominant if and only if it maximises its
discounted accumulation of rewards against every joint policy 𝜋−𝑖
of the rest of agents −𝑖 , and every state 𝑠 ofM:

𝑉 𝑖

⟨𝜋𝑖
∗,𝜋−𝑖 ⟩

(𝑠) ≥ 𝑉 𝑖
⟨𝜋𝑖 ,𝜋−𝑖 ⟩ (𝑠), (3)

where 𝜋𝑖 is any policy of agent 𝑖 such that 𝜋𝑖 (𝑠) ≠ 𝜋𝑖∗ (𝑠).



Computing equilibria in a Markov Game is a complex task that
has been extensively explored by the game theory and reinforce-
ment learning literature [10, 27, 35]. The choice of algorithms for
this purpose varies depending on the specific properties of the
environment. When no specific assumptions about the game are
made, employing single-agent algorithms, such as Proximal Policy
Optimisation [32] , independently for each agent may lead to an
equilibrium [12]. Although such an approach does not have theo-
retical guarantees of convergence for general Markov games, it is
more likely to converge if at least one dominant equilibrium exists.

2.2 Designing ethical environments
To ensure that reinforcement learning agents learn to behave eth-
ically, we need to incorporate ethical knowledge into their envi-
ronment. A typical way to aggregate ethical information in re-
inforcement learning is to include an ethical reward function 𝑅𝑒
[8, 26, 30, 37]). In this work, we focus on the approach of Rodriguez-
Soto et al. in [30] because it has been shown to work for multi-agent
environments.

In more detail, [30] considers a Markov game in which all agents
have two reward functions: an original reward function 𝑅𝑖0 (the
reward function that rewards each agent 𝑖 for fulfilling its individual
objective), and an ethical reward function 𝑅𝑖𝑒 that rewards each
agent 𝑖 when behaving ethically. The authors formalise such a
Markov game as an Ethical Multi-Objective Markov game:

Definition 2.5 (EthicalMOMG). An EthicalMulti-ObjectiveMarkov
game is defined as a tupleM = ⟨𝑆,𝐴𝑖=1,...,𝑛, 𝑅𝑖=1,...,𝑛0 , 𝑅

𝑖=1,...,𝑛
𝑒 ,𝑇 ,𝛾⟩

such that for each agent 𝑖:
• 𝑅𝑖0 is the original reward function of agent 𝑖 , defined as re-
ward functions in Markov games.
• 𝑅𝑖𝑒 : S × A𝑖 → R rewards performing actions ethically-
aligned and punishes performing actions ethically-misaligned.

The remaining elements ofM are defined identically to Markov
games.

Ethical MOMGs consider alternative equilibrium concepts fo-
cused on the ethical reward function of agents. The first of these
equilibrium concepts are ethical equilibria, which are Nash equilib-
ria 𝜋∗ with respect to the ethical reward functions 𝑅𝑖𝑒 .

The second equilibrium concept of Ethical MOMGs is best-ethical
(BE) equilibrium. Best-ethical equilibria represent joint policies in
which all agents behave ethically aligned. On top of that, they
also try to fulfill their respective individual objectives as much as
they can. They are defined as those joint policies 𝜋∗ that, among
ethical equilibria, are also a Nash equilibrium concerning the agents’
original reward functions 𝑅𝑖0. Formally:

Definition 2.6 (Best-ethical equilibrium). Let M be an Ethical
MOMG. We say that a joint policy 𝜋∗ is a best-ethical equilibrium if
and only if it is both an ethical equilibrium, and also the policy 𝜋𝑖∗
of each agent is a best-response in the individual objective among
the set Π𝑒 (𝜋−𝑖∗ ) of ethical best-responses to 𝜋−𝑖∗ :

𝑉 𝑖
0⟨𝜋𝑖∗,𝜋−𝑖∗ ⟩

= max
𝜋𝑖 ∈Π𝑒 (𝜋−𝑖∗ )

𝑉 𝑖
0⟨𝜋𝑖 ,𝜋−𝑖∗ ⟩

.

The goal of the authors of [30] is to design, from a given Ethical
MOMGM, an alternative Ethical Markov gameM∗ that provides

enough incentives to the agents to learn to behave ethically. The
way of providing incentives is by designing a (single-objective)
Markov game that aggregates the two reward functions of the
agents 𝑅𝑖0 +𝑤𝑒 · 𝑅𝑖𝑒 in such a way that ethical rewards 𝑅𝑖𝑒 are multi-
plied by an ethical weight𝑤𝑒 > 0. Formally:

Definition 2.7 (Ethical Markov Game). LetM be an Ethical Multi-
ObjectiveMarkov Gamewith reward functions𝑅𝑖0, 𝑅

𝑖
𝑒 for each agent

𝑖 . We refer to the Ethical Markov gameM∗ associated withM to a
Markov game with reward function 𝑅𝑖0 +𝑤𝑒 · 𝑅𝑖𝑒 with𝑤𝑒 > 0, s.t.:
• There is at least one dominant equilibrium inM∗.
• At least one dominant Nash equilibrium of M∗ is a best-
ethical equilibrium inM.

Rodriguez-Soto et al. expected that agents would be inclined
to learn to behave ethically by creating an ethical environment
wherein at least one dominant equilibrium exhibits ethical be-
haviours. Moreover, the authors provided a process in [30] to com-
pute such an environment, called themulti-agent ethical embedding
process (MAEEP).

Interestingly, theMAEEP exhibits convergence guarantees under
some restrictive assumptions. These assumptions include, among
others, that: (1) there exists at least one dominant equilibrium with
respect to the ethical reward functions in the Ethical MOMG envi-
ronment; and (2) at some step of the process, apply a single-agent
reinforcement learning algorithm that is guaranteed to find the best
response for single-agent Markov games (also known as Markov
decision processes). Employing a learning algorithm with proven
convergence properties, such as Q-Learning [36], ensures a trust-
worthy design for the ethical environment. However, RL algorithms
with convergence guarantees have scalability issues, making the
ethical design of large and more realistic environments unfeasible
with the current MAEEP.

3 APPROXIMATE ETHICAL EMBEDDING
This section presents the Approximate Multi-Agent Ethical Embed-
ding Process (AMAEEP). This process designs environments where
agents are incentivised to behave ethically (i.e., to learn the approx-
imate best-ethical equilibria). Whilst the original MAEEP required
algorithms with theoretical guarantees of convergence, our approx-
imate process removes such constraints, allowing its usage in larger
environments regarding states and agents.

We design an ethical environment by transforming a MOMG,
which considers the individual and ethical objectives, into a single-
objective MG that combines the rewards from both objectives. We
scalarise the rewards by weighting the ethical reward with the
minimal ethical weight that still incentivises an ethical behaviour.
The reasons for searching a minimal ethical weight are threefold:
(1) we consider that a reward function can have an associated cost
when deploying the agents; thus, an excessive ethical weight would
report a higher cost for the environment designer; (2) analogous to
the AI Safety approach [17, 18], we want our algorithm to minimise
the impact of the design process; (3) high-magnitude rewards cause
exploding gradients and stability issues on Deep Reinforcement
Learning algorithms, leading agents to potentially disregard the
individual objective.

The originalMAEEP computes the exactminimum ethical weight
for which the agents are incentivised to learn to behave ethically in



an Ethical Markov game. However, the MAEEP algorithm requires:
(1) the exact computation of Nash equilibria in a Markov game,
which is an unfeasible requirement for environments with large
state space; and (2) that, in the designed environment, there is at
least one dominant equilibrium in which all agents behave ethically.
Meanwhile, deep multi-agent reinforcement learning has impres-
sive results in learning near Nash equilibria [4, 22, 39]. Therefore,
in this work, instead of computing the minimal ethical weight for
obtaining an Ethical Markov game, we pursue computing the mini-
mal ethical weight for which agents behave approximately ethically.
First, we formalise the notion of approximate ethical behaviour
through the formal definition of 𝜖-best-ethical equilibrium:

Definition 3.1 (𝜖-best-ethical equilibrium). LetM be an Ethical
MOMG, and 𝜖 > 0 a positive number. We say that a joint policy
𝜋𝜖 is an 𝜖-best-ethical equilibrium if and only if it is an 𝜖-ethical
equilibrium:

𝑉 𝑖
𝑒⟨𝜋𝑖𝜖 ,𝜋−𝑖𝜖 ,⟩

(𝑠) ≥ 𝑉 𝑖
𝑒⟨𝜋𝑖 ,𝜋−𝑖𝜖 ⟩

(𝑠) − 𝜖 for every 𝜋𝑖 , (4)

and, in addition to being an 𝜖-ethical equilibrium, the policy 𝜋𝑖∗ of
each agent is an 𝜖-best-response in the individual objective among
the set Π𝑒

𝜖 (𝜋−𝑖∗ ) of 𝜖-ethical best-responses to 𝜋−𝑖∗ :

𝑉 𝑖
0⟨𝜋𝑖∗,𝜋−𝑖∗ ⟩

≥ 𝑉 𝑖
0⟨𝜋𝑖 ,𝜋−𝑖∗ ⟩

(𝑠) − 𝜖 for every 𝜋𝑖 ∈ Π𝑒
𝜖 (𝜋−𝑖∗ ).

Having defined an approximate ethical behaviour, we can for-
malise our goal as designing an environment wherein agents are
incentivised to learn an approximate ethical behaviour. We refer to
that environment as an 𝜖-ethical Markov game.

Definition 3.2 (𝜖-ethical Markov Game). Let M be an Ethical
Multi-Objective Markov Game with reward functions 𝑅𝑖0, 𝑅

𝑖
𝑒 for

each agent 𝑖 . We refer to the approximate ethical Markov game
M𝜖 associated withM to a Markov game with reward function
𝑅𝑖0 +𝑤𝑒 · 𝑅𝑖𝑒 with𝑤𝑒 > 0, such that at least one 𝜖-Nash equilibrium
ofM∗ is an 𝜖-best-ethical equilibrium inM.

The remainder of this section explains our approximate multi-
agent ethical embedding process for designing 𝜖-ethical Markov
games. This process consists of three steps, as depicted in Figure 1:

(1) Reference policy computation.We compute a so-called
reference joint policy 𝜋𝑟 , wherein all agents behave ethically.
The computation is performed by applying any algorithm to
compute Nash equilibria or near Nash equilibria.

(2) Ethical weight computation.We propose an iterative al-
gorithm to find a near-minimal ethical weight𝑤𝑒 for which
the reference policy 𝜋𝑟 is also a near Nash equilibrium in an
approximate ethical MG with associated ethical weight𝑤𝑒 .

(3) Build approximately ethical environment. We build the
𝜖-ethical MGM𝜖 using the ethical weight𝑤𝑒 to scalarise and
embed into a single reward function both reward functions
of the original environment.

Next Subsections 3.1 and 3.2 detail the steps of the AMAEEP.
Finally, Subsection 3.3 presents the full algorithm of the AMAEEP.

3.1 Reference policy computation
The initial phase of the AMAEEP involves computing the reference
policy. In the next step, we need this reference policy to identify
the minimal weight necessary to design an ethical environment.

Algorithm 1 Compute Ethical Reference Policy

Input: Ethical MOMGM, SolveMG, ethical weight𝑤𝑠 > 1
1: M𝑠 ← design Strong Ethical MG applying𝑤𝑠 toM
2: 𝜋𝑟 ← SolveMG(M𝑠 )
3: return 𝜋𝑟 .

Our way of computing this reference policy is by computing a
near Nash equilibrium in an auxiliary ethical Markov game, which
we call a strong ethical Markov gameM𝑠 . In a strong ethical Markov
game, its associated ethical weight𝑤𝑒 is large enough𝑤𝑒 >> 1 to
incentivise agents to always prioritise the ethical objective over
the individual objective (without completely disregarding it). Thus,
agents will behave ethically for any Nash equilibrium of a strong
ethical Markov game. Formally:

Definition 3.3 (Strong ethical Markov Game). LetM be an Ethical
Multi-Objective Markov Game with reward functions 𝑅𝑖0, 𝑅

𝑖
𝑒 for

each agent 𝑖 . We define a strong ethical Markov gameM𝑠 associated
withM as a Markov game with reward function 𝑅𝑖0 +𝑤𝑠 · 𝑅𝑖𝑒 with
weight vector 𝑤𝑠 >> 1 significantly larger than 1 (assuming 𝑅𝑖0
and 𝑅𝑖𝑒 are normalised or in a similar scale), such that every Nash
equilibrium inM𝑠 is also a best-ethical equilibrium inM.

Although a strong ethical Markov gameM𝑠 incentivises agents
to learn to behave ethically, for the three reasons exposed at the
beginning of Section 3, we cannot considerM𝑠 as the final environ-
ment where agents will learn to behave. Nevertheless, as previously
mentioned, finding a reference best-ethical equilibrium is useful.
Any Nash equilibrium is a best-ethical equilibrium in a strong ethi-
cal Markov gameM𝑠 , and thus, any algorithm to compute a near
Nash equilibrium inM𝑠 will yield an (approximate) best-ethical
equilibrium.

To finish this Subsection, we provide the pseudocode for com-
puting the reference joint policy 𝜋𝑟 in Algorithm 1. Our algorithm
considers as input an ethical MOMGM, a weight vector𝑤𝑠 large
enough, and any algorithm to compute Nash equilibria in a Markov
game SolveMG. If SolveMG is guaranteed to find a Nash equilib-
rium, the obtained reference policy will be an exact best-ethical
equilibrium. Otherwise, the obtained reference policy will be an
approximate best-ethical equilibrium.

3.2 Minimum weight computation
After obtaining the reference policy 𝜋𝑟 , the second step of the
AMAEEP consists of finding its associated minimal ethical weight
𝑤𝑒 ∈ (0,𝑤𝑠 ]. With such an ethical weight 𝑤𝑒 , we will be able to
design an ethical Markov game in which agents will be incentivised
to learn to behave ethically.

In more detail, this second step aims at finding the minimum
ethical weight𝑤𝑒 for which the reference policy 𝜋𝑟 is still a near
Nash equilibrium. For such weight 𝑤𝑒 , we will be able to design
a (single-objective) ethical Markov game wherein at least one 𝜖-
Nash equilibrium (the reference joint policy) is an 𝜖-best-ethical
equilibrium.

Our ethical weight computation algorithm can be found in Algo-
rithm 2. Our algorithm considers as input: an ethical MOMGM,
the reference joint policy 𝜋𝑟 , a small positive number 𝛿 > 0, and



Figure 1: Approximate Multi-Agent Ethical Embedding Process.

any algorithm to compute equilibria in a Markov game SolveMG.
If SolveMG is guaranteed to find a Nash equilibrium, the obtained
ethical will be the minimum to design an ethical Markov game.
Otherwise, the obtained ethical weight will be the minimum to
design an approximate ethical Markov game.

Our ethical weight computation algorithm works as follows.
First, we know that𝑤𝑒 is greater than 0 and smaller or equal than
𝑤𝑠 (because we already know that 𝜋𝑟 is an approximate NE for the
ethical weight 𝑤𝑠 ). Thus, the ethical weight 𝑤𝑒 we seek belongs
to the interval [0,𝑤𝑠 ]. To obtain such weight, we iteratively select
specific points 𝑤 ′𝑒 of the interval [0,𝑤𝑠 ] following an heuristic.
For each weight 𝑤 ′𝑒 , we build an associated Markov gameM𝑤′𝑒 .
Thereafter, we compute a near Nash equilibrium 𝜌 within such
environmentM𝑤′𝑒 . If, for a given ethical weight𝑤𝑒 , the computed
equilibrium 𝜋 is identical to the reference policy 𝜋𝑟 , our algorithm
finishes and returns𝑤𝑒 as the minimal weight.

The ethical weight computation begins by computing an 𝜖-Nash
equilibrium for weight 𝑤 ′𝑒 = 0 (lines 1-3 of Algorithm 2). That is,
we run the SolveMG algorithm on a Markov Game with reward
function 𝑅𝑖0 + 0 · 𝑅

𝑖
𝑒 .

The algorithm finishes if the resulting 𝜖-Nash equilibrium ob-
tains the same returns as the policy 𝜋𝑟 (line 4 of Algorithm 2).
Otherwise, the algorithm proceeds if a different equilibrium 𝜋 ≠ 𝜋𝑟
is obtained. Figure 2 illustrates an example environment in which,
for a given agent, the reference policy (depicted in green) and the
policy associated with𝑤 ′𝑒 = 0 have different scalarised returns. If
for a single agent these two policies differ, the algorithms needs to
compute a different candidate weight.

The algorithm continues by selecting a new candidate weight
𝑤 ′𝑒 inside the interval [0,𝑤𝑠 ]. This new candidate weight 𝑤 ′𝑒 is
the point at which, for every agent 𝑖 , the scalarised value of the
reference policy 𝜋𝑟 is at least as high as the value of the equilibrium
𝜋 of environmentM𝑤𝑒

(lines 5-8 of Algorithm 2):

𝑉 𝑖
0⟨𝜋𝑖𝑟 ,𝜋−𝑖𝑟 ⟩

(𝑠)+𝑤 ′𝑒 ·𝑉 𝑖
𝑒⟨𝜋𝑖𝑟 ,𝜋−𝑖𝑟 ⟩

(𝑠) ≥ 𝑉 𝑖
0⟨𝜋𝑖 ,𝜋 ′−𝑖 ⟩

(𝑠)+𝑤 ′𝑒 ·𝑉 𝑖
𝑒⟨𝜋𝑖 ,𝜋 ′−𝑖 ⟩

(𝑠),∀agents 𝑖 .
(5)

Notice that such new weight𝑤 ′𝑒 is precisely the point at which
the scalarised values of 𝜋𝑖𝑟 and 𝜋𝑖 intersect for all agents 𝑖 . For
instance, back to Figure 2 example, assuming there is only one agent,
the new candidate ethical weight𝑤 ′𝑒 is selected by comparing the
point at which the blue line and the green line intersect. In this
case, it is the point𝑤 ′𝑒 = 1.59.

Consequently, our algorithm proceeds by computing a near Nash
equilibrium for the𝑤 ′𝑒 +𝛿 (line 9 of Algorithm 2). Recall that, for the
found𝑤 ′𝑒 , both the ethical reference policy 𝜋𝑟 and the equilibrium
𝜌 might obtain the same scalarised value. This 𝛿 > 0 is a small
quantity to guarantee that 𝜋𝑟 is prioritised over 𝜌 is prioritised.

Trained with weight 𝑉0 𝑉𝑒

𝑤𝑠 -250.134 20.1
0 -170.557 0.5257
1.6 -180.3455 20.72

Table 1: Multi-objective values obtained by the same agent 𝑖
trained with different ethical weights.

Figure 2: Example Representation in weight space of the
scalarised values that the three policies of Table 1 obtain
when scalarising their respective value vectors with an eth-
ical weight on the weight interval [0, 10]. Green policy is
associated to the ethical weight 𝑤𝑠 = 10, orange policy is
associated with𝑤𝑒 = 1.59, and blue policy is associated with
𝑤𝑒 = 0.

Again, we build the Markov gameM𝑤′𝑒 associated with the new
weight 𝑤 ′𝑒 (line 10 of Algorithm 2), and compute an equilibrium
forM𝑤′𝑒 using SolveMG (line 11 of Algorithm 2). If SolveMG finds
𝜋𝑟 , the algorithm finishes and returns the found weight (line 12 of
Algorithm 2). Otherwise, we compute a new ethical weight again
by applying Eq. 5 and repeat until convergence.

To guarantee that the algorithm always converge, the ethical
weight must increase at every iteration. To guarantee that, we set
the following ethical weight as the maximum among 𝑤 ′𝑒 + 𝛿 and
𝑤𝑒 + 𝛿 .

3.3 Algorithm
So far, we have described each of the main components involved in
the AMAEEP. Algorithm 3 describes how all tie together in order
to design an approximately ethical environment. The algorithm se-
quentially runs the processes described earlier. First, it computes an
ethical reference policy 𝜋𝑟 (line 1). Afterwards, it employs such 𝜋𝑟
to compute the minimum weight𝑤𝑒 (line 2). Finally, the algorithm



Algorithm 2Minimum Weight Computation

Input: Ethical MOMGM, SolveMG, 𝛿 , 𝜋𝑟 ,
1: Set the ethical weight𝑤𝑒 ← 0.
2: SetM𝑤𝑒

a single-objective Markov game associated to ethical
weight𝑤𝑒 .

3: 𝜌 ← 𝑆𝑜𝑙𝑣𝑒𝑀𝐺 (M𝑤𝑒
).

4: while 𝜌 ≠ 𝜋𝑟 do
5: for every agent 𝑖 do

6: Set𝑤 ′𝑒 ←
𝑉

𝜌𝑖

0 −𝑉
𝜋𝑖𝑟
0

𝑉
𝜋𝑖𝑟
𝐸
−𝑉 𝜌𝑖

𝐸

.

7: Set𝑤𝑒 ← max(𝑤𝑒 ,𝑤
′
𝑒 ).

8: end for
9: Set the ethical weight𝑤𝑒 ← 𝑤𝑒 + 𝛿
10: Set M𝑤𝑒

a single-objective Markov game associated to
ethical weight𝑤𝑒 .

11: 𝜌 ← 𝑆𝑜𝑙𝑣𝑒𝑀𝐺 (M𝑤𝑒
).

12: end while
13: return ethical weight𝑤𝑒 ← 𝑤𝑒 + 𝛿 .

employs this weight𝑤𝑒 to scalarise the reward functions and build
the resulting 𝜖-ethical Markov Game (line 3).

Algorithm 3Approximate Multi-Agent Ethical Embedding Process
Input: Ethical MOMGM, SolveSOMG, and 𝜖 > 0, 𝛿 > 0 freely

chosen
1: 𝜋𝑟 ← ComputeEthicalReferencePolicy(M, SolveMG)
2: 𝑤𝑒 ←MinimumWeightComputation(M, SolveMG, 𝛿 , 𝜋𝑟 )
3: return ⟨𝑆,𝐴𝑖=1,...,𝑛, (𝑅𝑖0 +𝑤𝑒 · 𝑅𝑖𝑒 )𝑖=1,...,𝑛,𝑇 ,𝛾⟩

Regarding the computational cost of the AMAEEP, it resides
mainly on the second step, the minimumweight computation. Com-
puting the minimum weight requires applying a solver algorithm
SolvevMG for Markov games (which can compute either a Nash
equilibrium or an 𝜖-Nash equilibrium) several times. Assuming
that the ethical reference policy is computed from a strong Ethical
Markov game with associated ethical weight𝑤𝑠 , then, in the worst-
case scenario, the AMAEEP would need to solve 𝑤𝑠/𝛿 Markov
games. In practice, in the majority of cases the number of MGs
required to find the ethical weight will be a mucher smaller number
𝑘 << 𝑤𝑠/𝛿 . Then, regarding the computational cost of SolveMG, it
will depend on the chosen algorithm. In our case, we have applied
Independent Proximal Policy Optimisation (IPPO) [12, 32], one of the
current state-of-the-art algorithms in multi-agent reinforcement
learning.

4 EXPERIMENTS AND RESULTS
Our experimental evaluation aims at experimentally validate our
approximate multi-agent ethical embedding process with a Markov
game from the literature, the Ethical Gathering game [23, 30]. In
particular, we evaluated the degree of ethical alignment of the learnt
policies of the agents in the environment designed by MAEEP with
two metrics:

(1) For each agent, we compared their accumulation of ethical
returns 𝑉 𝑖

𝑒 with respect to the reference policy applied by
our AMAEEP.

(2) For each agent, we registered the amount of unethical actions
that they performed (i.e., actions that provide a negative
ethical reward 𝑅𝑖𝑒 < 0).

4.1 Empirical setup
All experiments were performed in an enlarged version of the Ethi-
cal gathering game (EGG) [30], a grid world environment in which
several agents gather apples to ensure their individual survival.
This environment was, in turn, an ethical extension of the origi-
nal gathering game from [23]. In the Ethical gathering game, each
agent is required to gather a minimum amount of apples after sev-
eral time-steps in order to survive. Moreover, agents have different
capabilities, so inefficient agents have less survival expectancy than
the efficient gatherers . Therefore, the EGG generates an unequal
environment where more efficient agents can survive while in-
efficient agents starve. The goal of the AMAEEP is to create an
environment where agents behave in alignment with the value of
beneficence and learn to donate their excess. In order to support
beneficence, the ethical gathering game introduces a donation box:
agents with enough apples to survive can contribute to the donation
box1, whereas agents in need can retrieve apples from it.

4.1.1 States of the ethical gathering game. To test our algorithm
scalability, we used two different configurations of the EGG with a
different amount of total states. The two configurations are called
the medium and the large environment. The main difference be-
tween them is that in the large environment, the grid map of the
environment is twice the size of the map of the medium environ-
ment (see Figure 3). Both environments present a map size larger
than the original ethical gathering game from [30], with the large
environment map size corresponding to the size of the original
Gathering Game environment [23]. Both configurations present
several spots on the grid map where apples can appear and regen-
erate. The large environment presents more apple spots than the
medium one, and they are randomly located. The final difference be-
tween the medium and the large environment is that there are three
agents in the medium environment, while there are five agents in
the large environment.

The rest of the environment parameters are equally set for both
configurations of the ethical gathering game. The survival threshold
of apples that agents need to gather to survive is set to 𝑡ℎ𝑑 = 15.
Also, for both configurations, the maximum number of apples that
can be stored in the donation box (the donation box capacity) is set
to 𝑑𝑏𝑐 = 10.

Finally, regarding the observability of states by agents, they only
detect partial observations of the environment at each time step.
Concretely, they only perceive the area of grid size 9 × 9 around
them.

4.1.2 Actions of the ethical gathering game. Regarding the actions
that agents can perform, they are limited to staying without moving,
move up, down, left, or right, and donating or taking from the
donation box. There is no explicit action of gathering apples. Instead,
1Notice that the effort required to donate can be assimilated to that of cleaning the
aquifer in the cleanup game [20].



Figure 3: Large experiment grid map (16 × 32 cells). Medium
experiment uses the 16× 16 cells on the left. Title denotes the
number of apples of each agent and the donation box.

an agent has to move to a position containing an apple to obtain it.
However, as previously mentioned, agents have different gathering
capabilities, directly affecting the expected amount of apples they
can gather. Agents are divided into two groups: efficient agents
and inefficient agents. In general terms, an efficient agent never
fails when trying to gather an apple, while an inefficient agent has
a large probability of not obtaining an apple when trying to get
it. In the medium environment, which involves three agents, only
agent number three (𝑖 = 3) is considered efficient. Then, in the
large environment (with five agents), two agents are set as efficient:
agents numbered (𝑖 = 3) and (𝑖 = 5).

4.1.3 Rewards of the ethical gathering game. In the EGG, agents
have an individual objective (to gather as many apples as possible)
and an ethical objective (to use the donation box to promote benef-
icence). Both objectives are specified by means of their respective
reward functions:
Individual reward function𝑅𝑖0: Each time-step that an agent 𝑖 has
not yet reached its survival threshold, the agent receives a negative
reward of 𝑅𝑖0 = −1. In contrast, an agent receives a positive reward
of +1 on the individual objective every time it gathers an apple
from the ground or the donation box. Finally, an agent receives a
negative reward of 𝑅𝑖0 = −1 for donating an apple to the donation
box, as it is losing it.
Ethical reward function 𝑅𝑖𝑒 : Agents receive a positive ethical
reward of 𝑅𝑖𝑒 = 0.7 if they donate an apple to the donation box if
they have enough apples to survive. However, if they have enough
apples but take one from the box, they are punished with a negative
reward of 𝑅𝑖𝑒 = −1 on the ethical objective.

4.1.4 Algorithm architecture. For both configurations, we have
applied the same algorithmic architecture for the AMAEEP. In
particular, we have used as the Markov game solver an Independent
PPO [12] architecture with three hidden layers of 256 units each
for both the actor and the critic neural networks. To select the
hyperparameters of IPPO, we applied Optuna [3], a hyperparameter
optimiser. Specifically, we used it to set each agent’s learning rate
(for actors and critics) and global entropy annealing parameters. We
set IPPO to do 80000 episodes of 500 time steps for all the training
instances done on the experiments. Updating parameters every five
episodes.

Figure 4: Graph showing each agent’s median number of
resources and the donation box within 1000 simulations. The
interquartile range is displayed as a shade around the entity
to which it belongs.

4.2 Applying the AMAEEP
Here we detail the steps of applying our ethical embedding process
to both configurations of the ethical gathering game.

4.2.1 Reference Policy Computation. The initial step in executing
AMAEEP involves computing a reference policy by learning an
approximate equilibrium within a strong ethical MG, denoted as
M𝑠 . For these experiments, we selected𝑤𝑠 = 10 to constructM𝑠 ,
thus prioritising the ethical objective tenfold over the individual
objective. Table 2 (rows 1 and 4) shows that, in both medium and
large instances of the EGG environment, policies trained inM𝑠

result in significantly higher ethical returns for efficient agents
compared to inefficient agents. We can also see how the percentages
regarding the survival of all agents and donation box filling are
high. Figure 4 displays the median resources for agents and in
the donation box across 1000 simulations of 500 steps each. For
both reference policies corresponding to the medium and large
configurations, there are 0 unethical actions. This suggests that the
learning algorithm effectively computed an approximation of the
best-ethical equilibrium.

4.2.2 MinimumWeight Computation. The subsequent step involves
identifying the near-minimum ethical weight. Initially, it is neces-
sary to determine the near Nash equilibrium for the environment
when the ethical weight is 0. In Table 2, rows 2 and 5 illustrate
how the values for the individual objective 𝑉𝑜 for efficient agents
are high, whereas those for inefficient agents are significantly low.
Given that the ethical weight is zero, no agent receives a positive
ethical return, as ethical actions have not been rewarded during
training. Additionally, we can see that there is no simulation in
which all the agents survive, nor the donation box ends up full
at the end of the simulation. We refer to this kind of policies as
unethical policies.

To find the next candidate weight𝑤 ′𝑒 , we apply equation 5 with
the values corresponding toweights (0,𝑤𝑠 ]. Tomaintain brevity, we
do not show the computations for all agents and both experiments;
we focus only on agent 𝑖 = 5 of the large experiment as an example.
Figure 5 shows the visual representation of equation 5 on the values
obtained for agent 5 of the large environment. These policy lines



Agent 1 (ineff.) Agent 2 (ineff.) Agent 3 (efficient) Agent 4 (ineff.) Agent 5 (efficient) Global statistics
Experiment 𝑉 1

0 𝑉 1
𝑒 𝑉 2

0 𝑉 2
𝑒 𝑉 3

0 𝑉 3
𝑒 𝑉 4

0 𝑉 4
𝑒 𝑉 5

0 𝑉 5
𝑒 Survival Rate Full DB

medium 𝑤𝑒 = 𝑤𝑠 −266.65 1.60 −253.67 1.34 −98.18 19.61 - - - - 100% 100%
medium 𝑤𝑒 = 0 −395.30 0.00 −499.84 0.00 −43.62 0.00 - - - - 0% 0%
medium 𝑤𝑒 = 2.8 −260.86 1.23 −215.07 2.40 −100.78 18.78 - - - - 100% 100%
large 𝑤𝑒 = 𝑤𝑠 −319.85 0.47 −335.38 0.00 −137.98 20.92 −265.34 0.00 −164.65 15.33 100% 96%
large 𝑤𝑒 = 0 −498.88 0.00 −499.51 0.00 −92.82 −0.53 −498.55 0.00 −125.33 −0.28 0% 0%
large 𝑤𝑒 = 2.6 −294.13 0.53 −323.51 0.00 −124.56 20.93 −261.98 0.00 −138.02 15.95 100% 95%

Table 2: Individual returns 𝑉 𝑖
0 and ethical returns 𝑉 𝑖

𝑒 obtained by each agent during the different steps of our AMAEEP in both
the medium and large configurations and their ethical weight𝑤𝑒 . The two last columns show the percentage of simulations
where all agents survive and the percentage of simulations where the donation box is full by the end of the simulation.

Figure 5: Calculation of the new candidate𝑤 ′𝑒 for agent 5 for
the large experiment.

are drawn from the values in Table 2 (rows 4,5 columns 10, 11),
which are the components of the linear equation. 𝑉𝑒 is the slope
and 𝑉0 the y-intercept. We can observe the intersection at 2.51. To
clarify, as stated in subsection 3.2, we select the maximum weight
from the outcomes of intersecting the two policies for each agent.
Additionally, we add a small 𝛿 to select a weight to the right of
the intersection. For the large environment, our next candidate is
𝑤 ′𝑒 = 2.51 + 𝛿 = 2.6. Applying the same process for the medium
environment yields𝑤 ′𝑒 = 2.8.

We can again buildMarkov games for the obtained ethical weights
𝑤 ′𝑒 and compute an equilibrium. Table 2 shows the multi-objective
values obtained by the new approximate equilibria found for each
environment’s corresponding weight𝑤 ′𝑒 on rows 3 and 6. We ob-
served almost no difference in the ethical returns of the policies
of efficient agents between having trained applied weight 𝑤𝑠 or
𝑤 ′𝑒 . This can also be seen in the weight space. For instance, as il-
lustrated in Figure 6, agents 3 and 5 of the large environment have
both policies drawn as almost parallel lines far from intersecting
inside the current search space. Additionally, as the reference pol-
icy, the approximate equilibrium found for the new ethical weights
commit exactly 0 unethical actions in 1000 simulations of 500 time
steps. Overall, we consider that the algorithm has converged on
iteration one for both environment instances. Thus, AMAEEP has
found the 𝜖-best-ethical equilibrium with definitive ethical weights
set to 2.8, 2.6 for the medium and large environment, respectively.
With such weight, we can build the final 𝜖-ethical MG, which the
algorithm will return.

4.3 Results
Following the procedure depicted in subsection 4.2, we have de-
signed two 𝜖-ethical MG corresponding to the two experiments
denoted before. Note that after the AMAEEP is done, there is no

Figure 6: Weight space for agents 3 & 5 (large exper.). Refer-
ence policy in green, in orange the one learned with𝑤 ′𝑒 .

need to compute the near Nash Equilibrium on the resulting en-
vironment, as we obtained it as the last step of the process. On
the medium and large environments, agents learn with the reward
functions scalarised by weight vectors ®𝑤 = (1, 2.8) and ®𝑤 = (1, 2.6)
respectively.

Policies learned by IPPO in the 𝑒𝑝𝑠𝑖𝑙𝑜𝑛-ethical MGs acquire
similar value vectors to those obtained by the reference policy. As
we know the reference policy enacts ethical behaviour, we can
affirm that the joint policy learned on the 𝑒𝑝𝑠𝑖𝑙𝑜𝑛-ethical MG is
also value-aligned. Moreover, we have used two extra statistical
metrics measured on 1000 simulations. These are: (1) the survival
rate, which measures the percentage of simulations where all agents
have more apples than the survival threshold 𝑡ℎ𝑑 , and (2) Full DB,
whichmeasures the percentage of simulation onwhich the donation
box is full by the end of the simulation.

We can see that in Table 2 at rows 1, 3 for the medium experiment
and 4, 6 for the large, these two metrics are almost identical for the
learned policy and the reference policy. Thus, we conclude that both
policies correspond to the same approximation of the 𝜖-best-ethical
equilibrium of the original MOMG.

5 CONCLUSIONS AND FUTUREWORK
Based on the Multi-Objective Reinforcement Learning literature,
we tackle the open problem of building an ethical environment for
large multi-agent systems wherein all agents in the system learn to
behave ethically while pursuing their individual objectives. We call
our method Approximate Multi-Agent Ethical Embedding Process
(AMAEEP), and we empirically evaluated it in an ethical extension
of the gathering game where agents needed to consider the moral
value of beneficence. As future work, we plan to develop methods
for aligning a multi-agent system with multiple moral values.
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