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ABSTRACT
In multi-agent systems (MAS), applications that directly interface
with daily human activities represent a rich avenue for exploration.
This paper dives into a potentially impactful application of MAS,
targeting a well-known real-world challenge: meeting scheduling.
While there have been previous efforts to address this challenge,
we believe that the time is right to revisit this task as a blue-sky
challenge for the MAS community.

Traditional scheduling methodologies rely on static, sub-optimal
support tools that are susceptible to inefficiencies that include re-
peated rescheduling, and the overhead for the humans affected
per scheduling attempt remains substantial. This opens an intrigu-
ing challenge for the MAS community: What if a collection of
autonomous agents could extend human capabilities, designed to
adapt and negotiate, making scheduling more dynamic and less
time-consuming? The potential of collective time saved is substan-
tial, not only in a reduction of human effort due to fewer reschedul-
ing attempts, but also in better alignment of schedules. Furthermore,
the privacy of participants can be better preserved.

We argue that the richness of this domain is of interest to the
MAS community and that recent advances in AI open up new ways
for tackling this challenge. In this paper, we set the stage for this
research direction, focussed on the use of MAS to support an age-
old, yet fundamental and pervasive task.
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1 INTRODUCTION
Meetings with others, for social and work-related interactions, form
a crucial part of our daily lives. A 2014 survey by Ovum1 found
that employees meet eight times per week on average and that this
number has been rising over the years. More specifically, executive
management and higher meet on average 12 times a week and VPs,
directors and C-level roles in highly collaborative industries reach
an even higher average of 17 meetings per week.

These business meetings need to be scheduled, which takes an
average of 26–30 minutes per meeting per participant according to
a blog by Doodle2. This makes scheduling meetings a major time
investment for the average employee, who likely has to schedule
their ownmeetings. Higher-ranking roles often have assistants who
perform this scheduling task on their behalf and only occasionally
ask their bosses for confirmation. Furthermore, manual scheduling

1Ovum 2014 - Collaboration 2.0: Death of the Web Conference (As We Know It)
2https://doodle.com/en/resources/blog/study-reveals-time-spent-with-scheduling/

Proc. of the Adaptive and Learning Agents Workshop (ALA 2024), Avalos, Müller, Wang,
Yates (eds.), May 6-7, 2024, Online, https://ala2024.github.io/ . 2024.

can lead to sub-optimal schedules, due to the complexity of the
problem. Tools that support solving this problem are popular3, but
are often suboptimal as they only solve part of the problem. There
is much to be gained from improving the process of scheduling,
which is also recognised by industry4.

We informally define the meeting scheduling problem (MSP) as
the problem of finding a time slot of a desired duration in which
the intended set of participants (or an acceptable subset thereof)
commit to attending the meeting at an agreed location. We note
that the location can be on-site, online, or a mixture thereof. Fur-
thermore, the notion of an “acceptable subset” makes this de facto
a family of problems, as it leaves unspecified who determines what
defines the acceptability of that subset. In terms of complexity, the
problem becomes easy, if this is determined by the one that initiates
the scheduling (authority), and most complex if acceptability is
determined by a group process amongst the intended participants.

Themeeting scheduling problem, being such amajor part of daily
human life, has seen decades of attention from the computer science
community, first appearing in the 80s [25, 33], often modelled as a
(form of a) constraint satisfaction problem (CSP) [46]. Researchers
have attempted solving the multi-agent MSP using market-based
approaches [18] and negotiation approaches, where agents, rep-
resenting users, negotiate over meeting time slots [26, 40]. In the
years after, the problem consistently continued to receive attention
among researchers (e.g., [9, 20, 23, 27, 30, 49, 51]) across several
communities.

Despite the MSP being a common and relatable problem that has
seen considerable effort from the research community, we are still
not close to a system that alleviates most of the burden. Difficulties
in learning human preferences, communication with humans, and
the complexity of decentralized mixed-motive multi-agent prob-
lems render the MSP challenging. Many of these challenges are
recognised as open problems in cooperative AI [12]. With the recent
successes in (multi-agent) (deep) reinforcement learning [45], large
language models (LLM), and reinforcement learning from human
feedback (RLHF) [44], we believe that now the time is right to revisit
the MSP as a rich and rewarding real-world challenge for the MAS
community. We also believe that the various communities within
computer science that have studied this problem can come together
to meet this challenge and jointly achieve far better solutions than
currently available.

In this paper, we lay out the necessary groundwork for tackling
this problem. We discuss the characteristics of the problem and try
to isolate its distinct components. We believe that a decentralised
negotiation-based solution is the best-fitting approach to solving

3https://www.gartner.com/reviews/market/scheduling-automation-software
4https://www.mckinsey.com/capabilities/operations/our-insights/smart-scheduling-
how-to-solve-workforce-planning-challenges-with-ai
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the MSP for scalability and practical reasons; this, therefore, forms
the basis of our effort.

2 THE MEETING SCHEDULING PROBLEM
The following anecdotical meeting scheduling process illustrates
the richness of the MSP: Alice must schedule a meeting with 4
colleagues, of which 2 are notoriously busy. In his role as organiser,
Alice first asks the 2 busy participants about their constraints and
options. The first slot found is too far in the future, so the organiser
reduces the meeting duration, allowing for two earlier slots. Alice
proposes these slots to the other participants. One of them, Bob,
already has other obligations conflicting with both slots, but might
be able to reschedule a meeting and requests the others to agree on
one of the two slots. After the agreement is made, Bob commits to
that slot after rescheduling his previous commitment.

In the introduction, we provided a simple and informal defini-
tion of MSP that nonetheless already introduces complexity by
referring to “an acceptable subset”. Furthermore, under the hood of
this definition lurk additional complexities, as mentioned, e.g., by
Berger et al. [4]: Each participant must be able to reach the meeting
location, attend for the entire duration and reach the next meeting
location on time. This refers to travel time between meetings and
to means of transportation. Even in online meetings, one must be
in a place where one is allowed to speak, and that is quiet enough
to hear what is being discussed. Aside from such practicalities
that complicate MSPs, there are also numerous human aspects to
consider, e.g., participants having ulterior motives and/or hidden
agendas, strategic voting, powerplay, and incomplete revelations
of potential meeting slots. Any and all of these have an impact on
what information they are willing to share and when, how much
importance they attach to the meeting and some of its intended
participants, and how many attempts have to be made to arrive at
a feasible solution.

2.1 Earlier formalisations
The MSP naturally lends itself to be formalised as a constraint
satisfaction problem (CSP) [46]. Formalised in this manner, all the
techniques for solving CSPs are applicable. This includes centralised
and distributed approaches. Centralised approaches boil down to
efficient search strategies in the solution space defined by means
of hard constraints or strategies for optimising the utility when
using soft constraints. In the distributed approaches, solving the
CSP is distributed to the agents as a local problem [50]. This often
scales better than centrally solving a given CSP instance and is
more sensitive to information sharing on a need-to-know basis.
Examples of models of specific MSPs as CSP include the assignment
problem [13], private incremental multi-agent agreement problem
(piMAP) [19], group activity selection problem (GASP) [14, 15],
valued constraint satisfaction optimisation problem (VCSOP) [39],
group scheduling problem (GSP) [29], and stable group scheduling
problem (SGSP) [30].

All of the above-mentioned formalisations of the MSP simplify
part of the problem and fail to capture the full richness of the
MSP. Such simplifications include full visibility of other agents’
preferences and assuming that decisions are made centrally. In the
following, we attempt to describe the full richness of the MSP as a

basis for future research on the topic. In doing so, we refrain from
fully formalising the problem, as multiple viable approaches exist.
Instead, we focus on the characteristics of the MSP that must be
considered when solving this problem.

2.2 Characteristics
We identified a set of characteristics of the problem of scheduling
meetings as well as of the participants involved in the meetings.
An overview of these characteristics can be found in Table 1. We
deliberately make a distinction between these two sets of charac-
teristics. The problem characteristics map the different aspects of
the problem that we can either consider or exclude when schedul-
ing meetings. The participant characteristics, descibe the potential
differences that participants have in relation to others within the
considered characteristics of the problem. As soon as at least one
participant has a certain characteristic, the problem must accom-
modate this.

To give a few examples of participant characteristics; within
an MSP, a participant might have full visibility of the calendar of
only part of the group of participants. Participants might also have
different views on the importance of other participants’ attendance
and substitutability. For example, Alice might feel that Bob can be
substituted by Carol, whereas Bob feels he cannot be substituted at
all. As another example, Alice might feel that Dan’s attendance is
crucial, whereas Dan does not think the meeting is that important
and will only attend if Erin will.

The characteristics we listed can be used to approach the prob-
lem in a systematic manner. Due to the richness of the problem, the
complexity is also high, and we might want to approach it in incre-
mental steps of complexity. Our characteristics form a structure of
challenges that can be attempted in isolation. We will describe the
characteristics one by one.

• Substitutability: If included, allows for the substitution of
(some or all) participants by others. This information is to
be observable by the participants. As a participant character-
istic, we consider two cases: Simple; the set of participants
that this participant can be substituted with. This models
only the view of a given participant on who can substitute
them. Full; for this participant, their full view on who (in-
cluding themselves) can be substituted by whom. Differences
in opinion need to be evaluated by all participants.

• Importance of attendance: If included, considers that some
participants are more important for the meeting than oth-
ers. Per participant, this is a value in [0, 1] representing the
importance of attendance of this or another participant, ac-
cording to this participant.

• Calendar Observability: If included, allows sharing of cal-
endars between participants. Per participant, there are three
possibilities: None if no part of this participant’s calendar can
be directly observed. Availability if only the availability
of this participant can be observed. Full: the participant’s
calendar is fully observable by others.



Table 1: Characteristics of the Meeting Scheduling Problem

Problem Participant

Description Type Type Values

Substitutability Boolean Set Other participants
Importance of attendance Boolean Continuous 0 - Irrelevant 1 - Crucial
Calendar Observability Boolean Categorical None Availability Full
Rescheduling Boolean Boolean
Role Boolean Categorical Organiser Participant Observer
Repeated encounters Boolean Categorical Yes Maybe No
Multiple rounds Boolean N/A
Preferences Boolean Categorical Invisible On options Visible
Arguments Boolean Categorical None Restricted format Free text

• Rescheduling: If included, meetings can be rescheduled to
clear slots for other more important meetings. Per partici-
pant, whether this participant has the authority and capa-
bility to reschedule existing meeting commitments to free a
slot.

• Roles: If included, participants can have different roles in
the MSP. Per participant, these are: Organiser if this par-
ticipant is the organiser. Participant if this participant is
intended to attend the meeting as a participant. Observer
if this participant is intended to attend the meeting as an
observer.

• Repeated encounters: If included, allows for multiple en-
counters between agents over the course of scheduling dif-
ferent meetings. Per participant, whether the participant is
encountered repeatedly.

• Multiple rounds: If included, allows for multiple rounds
of back-and-forth communication before an agreement is
made.

• Preferences: If included, consider preferences over meeting
slots instead of simple ‘yes’ or ‘no’ answers on availability.
none if this participant only answers ‘yes’/‘no’ to offered
slots. on options if this participant provides preferences
over offered slots. full if this participant provides access to
their full preference profile.

• Arguments: if included, permits arguments to be added
to answers regarding availability. Per participant, these are
None: the participant neither has the capability or authority
to add arguments to their answers, nor the ability to inter-
pret arguments made by others. Restricted format: the
participant can only add or interpret arguments of a pre-
specified restricted format. Free text: the participant can
add and interpret text arguments free of other restrictions.
The arguments characteristic can be used, for example, to
model that a participant provides a conditional answer, e.g.,
needs consultation with the human user, or that a ‘yes’ is
only valid if an agreement can be found within a given time.

2.3 Performance criteria
We argue that the following abstract criteria should be considered
when evaluating the performance of a solution to the MSP:

• Obtained utility: When considering preferences in theMSP,
one can measure properties over the utilities attained by all

agents when used as a global performance measure. Exam-
ples are average utility, Pareto-optimality, distance to Nash
product or Rawls point, [35, 37]. One can also look at the
utility attained by an individual agent as a local measure.

• Scheduling success: The percentage of the meetings that
could be scheduled. This measures the effectiveness of a
meeting scheduling solution in finding common slots and
aligning calendars. It should be easier to obtain a perfect
score when the number of agents involved is lower or when
the density of meetings is low, but becomes an interesting
measure when the opposite is true.

• Privacy preservation [19, 21, 22]: When observability is
(partially) enabled, which is likely true for real-world sce-
narios, then it becomes important not to reveal too much
information, nor share that information with others.

• Need for rescheduling: This can be considered an effi-
ciency measure. If a need for rescheduling meetings arises
frequently, this could indicate that the agents are not good at
estimating future conflicts and that they schedule meetings
too easily.

• Time investment of humans: As we advocate to approach
theMSP via a human-in-the-loop hybrid intelligent approach,
humans must be included in the scheduling process, e.g., for
preference elicitation or permission in exceptional situations.
However, not bothering the human too much is essential for
any system to achieve advantages over conventional meeting
scheduling methods.

• Trust and acceptance: If humans do not trust that the
agent will properly schedule their meetings, adoption will
be compromised. We note that asking for too little input
from humans might be detrimental to trust in the system
and the quality of its solutions.

• Computational cost: Considering the complexity of the
many variants of the MSP, it is important to pay attention
to the computational cost incurred by systems for solving
this problem.

3 NEGOTIATION IN MEETING SCHEDULING
As mentioned in Section 1, we can distinguish between market-
based and negotiation-based approaches to solving the MSP from
a multi-agent perspective. Market-based approaches assume that
agents are self-interested [18] and are generally based on the ideal
that fairness (e.g., maximum social welfare) can be guaranteed



through mechanism design, where the goal is to design a mecha-
nism that satisfies both the incentive-compatible (IC) property (i.e.,
agents are truthful about preferences) and the individually rational
(IR) property (i.e., you cannot receive a negative pay-off from the
mechanism). Some success has been achieved using, for example,
Clarke tax [6, 17] under simplified conditions, which do not hold
up in real-world applications. Designing effective mechanisms for
real-world multi-agent systems is theoretically challenging [9].

We argue that negotiation-based approaches are a good fit for
the MSP. Firstly, a negotiation approach fits naturally with how
humans agree on meeting times. Delegating the legwork to AI
agents does not interfere with this and would enable an effective
hybrid intelligent solution to this problem, where human capability
is extended with AI. Secondly, negotiation is distributed in nature
and does not per se require a trusted central authority. Thirdly, in
negotiation, the practice is only to reveal information on a need-to-
know basis, which promotes privacy and is part of the responsibility
by-design approach we subscribe to [16].

If we do not require participants to reveal all their preferences
and constraints and allow multiple scheduling attempts, then we
are basically in a negotiation setting. This is how humans schedule
meetings without tooling, often via email, which is cumbersome
and inefficient. Tools like Doodle andWhen2meet can be considered
single-shot negotiations [1] as they eliminate the multiple-round
component while lowering participants’ privacy. We believe nego-
tiation methods make the most sense as we aim for multiple-round,
privacy-preserving scheduling.

3.1 Negotiation protocols
Agents must communicate with each other to find agreements.
Open communication with other agents in the form of “cheap
talk” [11] or with humans in the form of natural language is possible
but renders the problemmore complex. We deem it more efficient to
use negotiation protocols to aid the negotiation process in finding
cooperative solutions. Such protocols restrict the type of messages
and order in which they are sent [43].

We are not the first to propose negotiation for MSP; examples
of proposed protocols for MSP are the single proposer mechanism
(SPM) [29] and the distributed score-based multi-round (DSM) ne-
gotiation mechanism [19].

3.2 Human preferences
Agents representing humans in negotiations should attempt to
optimise outcomes based on human preferences. We, therefore,
consider preference elicitation and estimation ([5, 42, 47, 48]) as
core components in negotiation-based approaches for solving the
MSP.

In general, a preference model can be bootstrapped based on
available historical data in the form of preference pairs through
direct preference optimisation (DPO) [34]. In the case of MSP, it can
be based on historical calendar data [27] and on the current state
of the calendar [10]. Estimating the preferences of other humans
can help in finding mutually beneficial outcomes. Opponent mod-
elling techniques can be used to estimate these preferences while
negotiating, see e.g., [2].

3.3 Learning to negotiate
Given a protocol and preference profile, agents need to learn how
to negotiate with other agents, focusing on maximising individual
utility, optimising for cooperativeness (e.g., social welfare), or a
mixture of those, depending on the characteristics of the MSP at
hand. Such agents can be trained using, e.g., automated algorithm
configuration [38] or reinforcement learning [3, 32, 41].

In MSP, one can assume that the environment is highly dynamic.
New agents will be encountered, other agents will change their
behaviour, human preferences over preferred slots will change,
etc. Optimising performance means that continuous adaptation is
required. An agent’s policy can be retrained at fixed times based on
historical interactions [31]. After training on a dataset, an agent can
be guided by expert annotations to improve exploration online [28].

4 DISCUSSION
The MSP is a challenging problem. Finding optimal Nash equilib-
rium solutions in such cooperative AI problems is known to be
NP-hard [7, 8, 24]. We therefore believe emphasis should be placed
on finding solutions that are good enough, but not necessarily
optimal, to avoid the need for exponential time solvers. Finding
sufficiently good solutions also avoids problems caused by agents
aiming to maximise utility deviating or rescheduling for minuscule
improvements, which hurts mutually beneficial cooperation [36].

Another important point concerns interaction with humans that
are not represented by agents. In the adoption of automated meet-
ing scheduling systems, there will be a transition period during
which some humans are represented by agents and others are not.
Communicationmethods change and humans are likely to be less re-
sponsive, both in terms of the frequency of interaction and response
time. Naturally, agents need to consider this in their scheduling
behaviour.

We also have to ensure a degree of fairness in such systems. It
cannot be the case that the calendar of some users will be inefficient
or that they are being exploited by other agents, simply because
they are not properly represented by their agent. Extra care must
be taken when a group of agents is dealing with a single participant
who is not represented by an agent. A lack of scheduling capabilities
should not lead to a drastically less desirable outcome compared to
other participants.

If we solve this problem, a societal implication is that humans
might change their view on appointments as being somewhat more
fluent than is currently the case. Whether this is net beneficial
remains to be seen, but an effort should be made to be alert to
potential negative side effects.

Finally, we reiterate that, in our view, the time is right to take
on this challenge. Recent interest and advances in dealing with
human preferences, aligning AI systems, cooperative AI and multi-
agent systems can all come together within the domain of meeting
scheduling. After a long period of off-and-on attention, the tools
might now be available to tackle this problem in a manner that
brings substantial benefits to the many individuals who have to
regularly schedule meetings and to their organisations.
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