
Learning Sensor Control for Information Gain in Dynamic,
Partially Observed and Sparsely Sampled Environments

J. Brian Burns Aravind Sundaresan Pedro Sequeira Vidyasagar Sadhu
SRI International, Menlo Park, CA 94025, USA

{brian.burns,aravind.sundaresan,pedro.sequeira,srikanthvidyasagar.sadhu}@sri.com

ABSTRACT

We present an approach for autonomous sensor control for infor-

mation gathering under partially observable, dynamic and sparsely

sampled environments that maximizes information about entities

present in that space. We describe our approach for the task of

Radio-Frequency (RF) spectrum monitoring, where the goal is to

search for and track unknown, dynamic signals in the environment.

To this end, we extend the Deep Anticipatory Network (DAN) Rein-

forcement Learning (RL) framework by (1) improving exploration

in sparse, non-stationary environments using a novel information

gain reward, and (2) scaling up the control space and enabling the

monitoring of complex, dynamic activity patterns using hybrid

convolutional-recurrent neural layers. We also extend this problem

to situations in which sampling from the intended RF spectrum/�eld

is limited and propose a model-based version of the original RL al-

gorithm that �ne-tunes the controller via a model that is iteratively

improved from the limited �eld sampling. Results in simulated RF

environments of di�ering complexity show that our system out-

performs the standard DAN architecture and is more �exible and

robust than baseline expert-designed agents. We also show that it

is adaptable to non-stationary emission environments.

KEYWORDS

Reinforcement Learning, Partial Observability, Dynamic Sparse

Environment, Sensor Control, Information Gain, Model-based

1 INTRODUCTION

Overview. Sensor control that maximizes information gain under

partially observable and dynamic environments is an important

problem that has several applications [18]. For example, consider

the problems of tracking widespread activity from a limited, but

controllable �eld of view, or tracking carbon monoxide levels over a

geographic area with the minimum number of sample sites. A rele-

vant problem, which we study in this work, is Radio Frequency (RF)

spectrum monitoring, which involves detecting and tracking multi-

ple dynamic signals in a potentially large RF spectrum using an RF

receiver (sensor) with only a limited, but tunable, reception band.

All these problems require a sequential decision making approach

that indicates which sensor(s) or sensor settings to choose at each

time instant based on history to maximize information gain e.g.,

knowledge about the number of signals, emitting bands, intervals

of activity, communication patterns, etc.

Challenges. The above tasks present several challenges: (i) partial

observability: each sensor (or sensor band) can only provide partial

observations of the underlying state; (ii) dynamic environments: the

underlying environment is stochastic and could be non-stationary,

Proc. of the Adaptive and Learning Agents Workshop (ALA 2024), Avalos, Müller, Wang,
Yates (eds.), May 6-7, 2024, Online, https://ala2024.github.io/ . 2024.

making it hard to track its state over time; (iii) sparse environments:

it is possible that useful information may only be infrequently

collected, meaning that the majority of observations are mostly

non-informative; (iv) costly samples: taking samples from an actual

�elded sensor is costly and so interactions with it are restricted

according to some budget.

Approach. In this paper, we study and evaluate our approach for

an abstracted RF spectrum monitoring task. In particular, the goal

is to control a band-limited RF receiver to optimize multi-signal

detection and tracking throughout an extensive RF environment.

The autonomous controller is given a range of the spectrum (dis-

cretized into several frequency bands) within which to operate. It

is not given information about the speci�c frequencies, densities

or distributions of the signals within this range. At each instant,

it can sample a sub-band of the spectrum to observe if there are

signals present in that sub-band. We developed an RF simulator on

which a controller is trained to decide which sub-band to sample

at each instant to accomplish the goal of tracking/predicting the

signals in the full spectrum. During the training process, the con-

troller learns the general behavior of the signals, such as frequency

switching patterns and typical durations, and learns how to use

this knowledge to search for and track these types of signals in

novel situations.

Towards this goal, we propose an approach based on the Deep

Anticipatory Network (DAN) [18] framework for optimal sensor

control in information gathering tasks. DAN uses deep Reinforce-

ment Learning (RL) with prediction rewards, where the action

suggested by a value-network, that implements the value function,

is rewarded whenever a separate model-network makes a correct

prediction of the true state based on observations that are the re-

sult of the action. In order to scale to large problem spaces, e.g.,

large spectrum and/or small reception bandwidth, and to e�ciently

learn and process signals with potentially complex frequency-time

patterns, we extended the DAN approach by implementing the pre-

diction and control functions using neural networks with hybrid

convolutional-recurrent layers, such as the ConvLSTM layer [24].

Additionally, as the environment is dynamic and sparse, we propose

novel information-gain rewards for our RL approach to encourage

exploration thereby avoiding sampling regions of spectrum where

signals were already identi�ed.

Another important aspect of our approach, that was not con-

sidered in the original DAN work, is the use of potentially limited

data from a �elded controller (referred to as experience feedback) to

update the RF simulator used for training. In particular, a controller

is trained in simulated RF environments by using a simulator that

parameterizes a distribution over several aspects controlling the dy-

namics of the RF spectrum, e.g., the number of emitting signals, the

frequency at which they emit, di�erent communication patterns,

https://ala2024.github.io/

etc. We refer to this as the lab simulator. Using it, the controller can

train on many and diverse samples of environments — far more

than can be sampled out in the actual �eld environments over a

reasonable training period. However, in a real-world situation, the

distribution over the actual �eld RF environments of interest may

be non-stationary, which can make the conditions in which the

controller was trained obsolete and consequently the controller

sub-optimal. In this work, we investigate how the lab simulator can

be updated using �eld experience data gathered by deploying the

trained controller in the �eld for a limited amount — the interac-

tions are restricted according to some budget. These �eld samples

are used to adjust the lab simulator’s parameters such that the gen-

erated environments closely match those encountered in the �eld,

and the controller’s policy can be �ne-tuned by RL-based retraining

on the updated lab simulator. We study this problem by using an

additional �eld simulator — one that holds the ground-truth of the

distribution over the environment parameters — to simulate the

collection of limited �eld data and to test the retrained system.

In this work, we will refer to a stochastic model of an RF environ-

ment, which determines its dynamics, as a spec. The �eld simulator

will have a �eld spec, which is hidden to the system, and during

any given training iteration, the lab simulator will have a lab spec

that is used to train the controller. In addition to estimating the

�eld parameters/spec using �eld samples, we study an alternative

approach of learning the �eld state dynamics model directly using

�eld samples. We then use this �eld state model in the lab as an

environment to train a controller using model-based RL.

Contributions. Our contributions in this paper are as follows:

• Extending the DAN framework to handle the challenging prob-

lem of RFmonitoring by scaling up the control space and enabling

the monitoring of complex, dynamic activity patterns using hy-

brid convolutional-recurrent processing steps.

• Improving exploration in sparse, non-stationary environments

using novel information gain rewards.

• A supervised learning variant that is shown to perform better

than RL approaches in certain environments.

• Twomodel-based RL approaches capable of model updating using

experience feedback from limited �eld deployment.

• An evaluation of the the proposed approaches using various

architectural con�gurations showing their bene�t over baseline

controllers in di�erent environments.

2 RELATED WORK

General approaches. Information gathering under partial observ-

ability, which is related to Partially Observable Markov Decision

Processes (POMDPs) [8], has been explored in several domains.

For example, Satsangi et al. [18], present a technique (our base-

line approach) for information gathering using Deep Anticipatory

Network (DAN) that decides which camera to switch on to track

people in a mall. They also applied a related approach to active per-

ception in robotics [19]. Wang et al. [22] propose an RL technique

for information gathering using sparse mobile crowd-sensing that

tells which cell to collect data from to minimize the uncertainty

in state estimation. Mnih et al. [14] and Haque et al. [4] present

an image classi�er that adaptively selects regions for processing

at high resolution. Most of these techniques do not address our

Figure 1: A partially observed RF environment with sequen-

tial scan for control, which misses the short signal bursts

at 1.2GHz. Plot: time(secs) vs frequency(MHz); cyan: signals;

dark blue: sampled bands; black x marks: detected signals.

problem combining dynamic environment, reward sparsity and lim-

ited �eld experience. In the domain of generic POMDP solutions,

James and Singh [7] present an algorithm for learning in POMDPs

assuming availability of ‘landmarks’ or special states that are not

hidden to the agent, but not available in our domain. Katt et al.

[10] present an approach based on Monte-Carlo tree search and

look-ahead planning for solving POMDP problems in an online

manner. However, due to large dimensional state space, such an

approach is not scalable to our domain.

RF domain. In the domain of RF spectrum monitoring, most of

the existing work is on signal detection and identi�cation (SDI)

rather than tracking. Franco et al. [2] present a hierarchical two-

step approach for SDI. At a �ner scale, they �rst use a sweeping

window to detect the local presence of signals, and at a larger

scale, these local detections are integrated using a frequency-time

region proposal network. Kulin et al. [11] present a single-step, an

end-to-end deep learning approach for wireless signal detection.

Mendis et al. [13] present an attention-driven RL technique for

signal detection in a wide-band spectrum. The proposed method

consists of two main components: a spectral correlation function

(SCF) based spectral visualization scheme and a spectral attention-

driven RL mechanism that adaptively selects the spectrum range

and implements the intelligent signal detection. This approach

however assumes that the modulation technique is known a priori.

Experience Feedback. This problem is related to other types of

machine learning tasks. In transfer learning for RL, (Taylor and

Stone [20] and Zhu et al. [25]) there is a source (lab spec) and target

(�eld spec) population; however, partial observability is not ad-

dressed. In model-based value expansion (imagination rollouts), the

number of real (�eld) interactions is reduced by doing additional

training with updated simulator (Feinberg et al. [1]). Kalweit and

Boedecker [9] and Hafner et al. [3] discuss RL imagination rollout

approaches based on uncertainty and latent space. However, unlike

our problem, most of these works deal with continuous actions.

Model-based RL traditionally involves interactions between a plan-

ning module and RL training (Moerland et al. [15]); Li et al. [12]

discuss a technique for accelerating model-free RL using imperfect

models for the related application of spectrum access. Hua et al. [5]

present a GAN-based method to learn the state-action values for

resource management in network slicing. Huang et al. [6] present

a Generative Adversarial Interactive Reinforcement Learning that

combines the advantages of GAN-based learning and interactive

RL. In our problem, the �eld state to be learned is a time-series

system and most existing approaches do not handle this case.

3 PROPOSED SOLUTION

3.1 State Estimation and Tracking

The problem involves �nding and tracking multiple signals that

have activity patterns of varying complexity involving several un-

known parameters. A controller agent is trained and tested using

multiple episodes (trials), where each episode has a new signal

environment sampled from the same stochastic environment model

(spec), and the episode involves a sequence of control (frequency

selection) and observation (signal detection) steps. The speci�c

signal patterns of each new environment are unknown to the agent

and must be inferred through tracking and monitoring during the

interaction. See Figure 5 for an overview of two sample episodes.

To solve this problem, we extend the original DAN architecture and

rewards.

Problem Formulation. Following the DAN approach in [18], we

consider a Partially Observable Markov Decision Process (POMDP)

[8] to model the dynamics of our RF environment. We denote B ∈ (

to represent the hidden state of the environment (all the signals

in the environment along with their center frequencies), ~ ∈ .

to denote a target variable of interest (whether a signal is present

in each band) that depends only on B , I ∈ Ω to denote a partial

observation (whether a signal is present in the observed sub-band)

that is correlated with ~ and 0 ∈ � to denote the action (which

sub-band to observe) taken by the agent. At each discrete timestep,

C , the agent takes an action 0C , the environment transitions to

state BC+1 and the agent receives an observation IC+1. The goal

of the agent is to correctly predict the target variable ~C given

the history of previous actions and observations denoted by ℎC =

(00, I1, ..., 0C−1, IC). We denote by ~̂ the agent’s prediction of ~. At

each step, the agent receives a reward, denoted by A (~C , ~̂C), that

indicates how similar ~C and ~̂C are.1

RF Environment. In the context of RF spectrum monitoring, B

represents the state of the whole RF spectrum, that contains a set

of unknown entities interacting with each other and transmitting

signals spread across a range of frequencies band and varying in

time. Further, ~ is the vector representing signal activity (0 for none

and 1 for activity) at all frequency bands, 0 represents the frequency

band(s) that the agent samples, and I represents observed detec-

tions (the presence/absence of signals at the sampled bands); ℎ is

the history of sampled frequencies and observations. The agent’s

actions can only sample the spectrum at speci�c frequencies. The

goal of the agent is to select actions at each timestep in order to

1The state (B) and target variable (~) are, in e�ect, equivalent in our experiments and
hereafter synonymous.

ℎ! = 𝑎", 𝑧#, … , 𝑎!$#, 𝑧!

𝑀(ℎ!%#, 𝜃&)

𝑄(ℎ!; 𝜃')

Experience Buffer

ℎ!, 𝑎!, 𝑟!%#, ℎ!%#, 𝑦!%#

RF

spectrum

𝑎! = argmax
(∈*

𝑄(ℎ!, 𝑎)

ℎ!%# = ℎ!, 𝑎!, 𝑧!%#

4𝑦

𝑟!%# = 𝑅 𝑦, 4𝑦 = 6 𝑟+, if 𝑦 = 4𝑦
𝑟′′, otherwise

𝑦 (supervised) 𝜃'+
𝜃&+

Figure 2: Deep Anticipatory Network (DAN) overview.

Figure 3: ConvLSTM-DAN architecture with Q andM outputs.

The ConvLSTM is convolutional in frequency and recurrent

in time.

accurately report the presence/absence of signals in all frequency

bands at that timestep. Fig. 1 shows an example of a partially ob-

served RF environment. One or more bands can be active (contain

signals) at any given time. Here, a sequential scan is performed

across the spectrum, which misses the short signal bursts around

1,200MHz.

Environment Spec Details. An environment spec de�nes an en-

vironment population model as a range of possible values for the

following parameters: (i) number: number of interacting signal

pairs; (ii) width: total number of spectral bands spanned by the

pairs; (iii) period: period of the signal pair interaction; (iv) duty

cycle: duration of one signal over the other during an interaction

cycle; (v) frequency: the frequency of the lowest of the signal pair;

(vi) start: timestep when signal pair appears in spectrum. Table 1

lists some of the environment specs and parameters used in our

experiments.

3.2 DAN framework

Deep Anticipatory Networks (DANs) [18] were developed for infor-

mation-gathering tasks under partial observability e.g., tracking

people using cameras. A DAN makes control decisions that maxi-

mize the information gathered (minimize the uncertainty) about

a target variable of interest ~ that cannot be fully-observed. The

key point is that, for this type of task, DAN avoids complex belief

state updating and instead uses state prediction rewards to guide

the agent behavior.2 DAN uses two neural networks to train a pol-

icy, as shown in Fig. 2. The �rst, W , takes the history of previous

2This has been demonstrated in Satsangi et al. [18] to be equivalent in e�ect to belief
updating.

actions and observations, ℎC , and produces &-values for the di�er-

ent actions. A second network, S , takes the history ℎC plus the

last action and observation to predict ~̂, i.e., an estimate of target

variable ~." is trained in a supervised manner with ground truth

data, i.e., using the actual target values ~. & is a standard value

function network trained using RL but here it is rewarded when

" ’s predictions are accurate, i.e., when ~̂ is similar to ~.& is trained

to maximize cumulative discounted reward,
∑
C ACW

C . The & and"

networks are trained simultaneously and, after training, only & is

used for autonomous control for information gain. In all of our DAN

variants," is trained using weighted binary cross entropy (WBCE)

as a loss, weighted to emphasize our metrics; see the discussion on

rewards and metrics in Sec. 3.2.2.

3.2.1 ConvLSTM, Predictive and InfoMax DAN Architectures. The

problem of RF spectrum monitoring presents several challenges,

including: being able to scale to large discrete frequency and time

domains, identifying repeating signal patterns in frequency-time

space and coping with non-stationary nature of the environment.

The original DAN does not address these challenges; we propose

various architectural and reward modi�cations to address them.

ConvLSTM-DAN. The baseline DAN uses fully connected/dense

layers for both& and" networks with Recti�ed Linear Unit (ReLU)

activation, which doesn’t scale e�ectively and makes learning of

frequency-invariant activity patterns di�cult. We address the scal-

ability of the problem space by using convolutional layers (convolu-

tion in frequency). We also introduce hybrid convolutional-LSTM

(Long Short Term Memory) / ConvLSTM layers [24], which com-

bine convolution in frequency dimension and recurrence/memory

in time dimension for learning translation-invariant frequency-time

activity patterns. This architecture is shown in Fig. 3. For ConvL-

STM training, we use a reward that is a function of the intersection

over union (IoU) of the predicted output from " and the ground

truth; see the discussion on rewards and metrics in Sec. 3.2.2. As the

input to both & and" networks are similar, and action selection

and state prediction are related tasks, the layers used to compute

features can be shared to reduce the training parameters. We call

this enhanced framework ConvLSTM-DAN, which has two outputs,

one for & and the other for" . (All of our DAN variants discussed

in this paper use a shared architecture.) After studying the e�ect of

di�erent well-known DQN/RL enhancements, we found that Duel-

ing DQN [23] improved results across the board and we include it

in our standard ConvLSTM-DAN framework (not shown in Fig. 3):

for & , the output of the last convolutional layer is split into two

streams — Value and Advantage — which are then combined to

give the & output. Double DQN [21] was not considered as useful

and was not incorporated.

PredictiveDAN. If the environment spec de�nes a variable number

of signals it introduces an interesting exploration / exploitation chal-

lenge with subtle di�erences in the payo� odds between carefully

tracking the signal found vs. �nding a new one.This problem is exac-

erbated in reward-sparse scenarios (with an empty spectrummost of

the time). In order to encourage exploring an unknown state space

and at the same time exploit the known state space, we propose an

enhancement over the ConvLSTM-DAN that provides an auxiliary

predictive reward, which we refer to as the Predictive-DAN. This is

similar to the Intrinsic Curiosity Module [16]. In Predictive-DAN,

the shared network in Fig. 3 has 3 outputs:<-output, " = ~C |ℎC
(the current state given current observation history), @-output,

& = 0C+1 |ℎC (next action to take given current observation history)

and a predictive output, V = ~C+1 |ℎC (the next state given current

observation history). Here, state refers to target variable, ~. When

the next action, 0C+1 is actually taken, then the m-network esti-

mates the current state given current information: ~C+1 |ℎC+1, where

ℎC+1 = {ℎC , 0C+1, IC+1}. We can denote the information gained from

this action as infogain = mean(abs(~C+1 |ℎC −~C+1 |ℎC+1∥)), which is

used as an auxiliary reward to train the Predictive-DAN&-network:

IoUreward + infogain ∗ 10. In practice, typically only the observed

‘band’ will change if at all, but if the network has learned relations

between signals in other bands, that could be a�ected too. This is

similar to the reward that can be usedwhen there is no ground-truth

(the di�erence being that this is only computed for the observed

state and not full state).

InfoMax-DAN.While in above architectures, we compute and use

information gain only for the executed action, it is also possible to

compute the information gained for all actions instead of just the

action taken. We use this idea to train &-net in a fully supervised

manner without using RL. This approach maximizes information

gained in a single step (with no cumulative reward). We refer to this

alternative approach as InfoMax-DAN, which is fully supervised

version of Predictive-DAN.

3.2.2 Rewards and Metrics. Since the goal in our control problem

is to maximize information about signal presence, it seems reason-

able to start with the commonly used detection/localization metric

Intersection over Union (IoU). In our case, intersection is the count

of (time, frequency) positions where true signals coincide with pre-

dicted ones, and union is the total count of true positions plus the

total for predicted ones (where predictions can either be probabili-

ties or thresholded, binary states). We use the following variants of

IoU for rewards and metrics in our experiments: Instantaneous IoU

is IoU for one slice of time; Cumulative IoU is cumulative IoU up to

a given time; Block IoU is cumulative for the last # timesteps. The

Instantaneous IoU can provide frequent rewards but is unstable in

sparse environments, which be can addressed using a di�erential re-

ward: Di�erential Block IoU = ��>*#+1
C − ��>*#

C , where the ��>*

are block IoU, for blocks of �xed # . For losses to train prediction, we

use weighted binary cross entropy (WBCE), which is an e�ort to tilt

the commonly used BCE more towards detection of sparse signals:

the error for existing signals is weighted more than the error for

non-existing signals. (The weight for bands without signals is set

to the actual signal density and the weight for bands with signals

is set to 1 − signal density.) In experiments, we have noticed that

WBCE is qualitatively better than BCE or IoU for a single time-step

which is ill-de�ned for a single time-step.

3.3 Experience-feedback via Model-based RL

Often, the lab spec used for training does not entirely cover the

�eld (ground-truth) population of environments — for example,

the domain knowledge employed may be outdated. To address this

challenge, we introduce an experience feedback loop. Once trained

on the lab spec, the agent is then deployed in �eld environments

(here, simulated by a �eld spec) for a limited time, during which it

collects samples that might be sparse. In this �elded phase, unlike

Figure 4: Experience feedback loop via direct �eld state esti-

mation.

the lab training, the agent does not have access to the underlying

full state required to train the" network via prediction loss. Rather,

these experiences are used to estimate the environments’ dynamics,

which are then used to update a lab spec/model. The agent is then

retrained using the updated spec/model and re-deployed for more

samples, and the process repeats for a number of times. We develop

two model-based RL approaches to implement this feedback loop:

(i) �eld spec estimation uses collected experiences to estimate the

�eld spec parameters directly, which is then sampled to retrain

the controller; (ii) �eld state estimation uses them to build a deep,

generative model of the �eld state sequence population, fromwhich

we sample to retrain the controller.

3.3.1 Field Spec Estimation. Experience feedback using �eld spec

estimation uses the following basic loop: (i) deploy a controller in

the �eld (simulator with �eld spec), (ii) use an expert system to

estimate the �eld parameters from the resulting samples (Sec. 4.1),

(iii) add the resulting estimated �eld spec to a pool of training

specs (including original lab spec), (iv) train the DAN controller

using samples from the training pool of specs, and (v) deploy the

resulting trained DAN. We studied three di�erent variations of

these steps. Estimating Spec from Feedback: in step (i), deploy

our expert controller (Sec. 4.1), and in step (iv), train from only

the estimated �eld spec. Estimating Spec for Retraining: in step

(i), deploy a DAN controller trained on a general lab spec, and in

step (iv), train from the spec pool with sample rates: estimated �eld

spec=0.7, lab spec=0.3 (to avoid forgetting). Bootstrapping: do

multiple iterations of the latter scheme, varying the �eld spec each

deployment and training from all previously estimated specs.

3.3.2 Field State Estimation. One drawback of the Field Spec Es-

timation approach is that it assumes that observed dynamics in

the �eld can be modeled by �tting a predetermined set of (known)

simulator parameters. In realistic settings, we cannot anticipate all

parameters governing the observed behavior in the RF spectrum —

e.g., what if the entities are using a di�erent communication proto-

col? To address this challenge, we follow a di�erent approach to

experience feedback that retrains the agent usingMachine Learning

(ML)-based methods that do not rely on parameterized environ-

ment speci�cations. Instead, the approach discussed here trains

the controller on full, extended state sequences reconstructed and

extrapolated from partially observed �eld samples. This will be

evaluated against one that directly does controller �ne-tuning on

the raw, partially observed samples.

In �eld state estimation, we �rst train our DAN controller using

a generic Lab Spec. We then adopt the following procedure (Fig. 4):

(i) deploy and collect �eld experiences, which are sequences of par-

tially observed states; (ii) reconstruct full state sequences from the

partially observed samples using a bidirectional Recurrent Neural

Network (RNN) or U-net architecture [17]; (iii) store reconstructed

�eld sequences in a database; (iv) sample these stored sequences and

use to initialize an RNN-based generator that then emits extended

sequences; (v) binarize the generated sequences (1=signal, 0=none);

(vi) use these to train the controller, instead of a parameterized

spec.

This will be compared to a DAN controller that is �ne-tuned in

the �eld directly (no lab retraining) using the available partially

observed �eld states (see 1. in Fig. 4). As we have ground truth

only in the particular band sampled, the reward obtained by the

"-network was modi�ed to be only the prediction in this band.

4 PERFORMANCE EVALUATION

Experimental Setup. In order to have su�cient complexity in

environment and control space to test our proposed approach, we

considered environments that vary in terms of the number of com-

municating signal pairs and their properties; Table 1 shows some of

the environment specs studied. We will start in Section 4.1 by com-

paring our DAN controller with expert-designed systems and study

their adaptability using SpecA as the environment for which the

expert-designed systems are optimized, while SpecB1 and SpecB2 –

environments with increased variation and complexity – are used to

test the adaptability. Example episodes from SpecA and SpecB2 are

shown in Fig. 5. Then, in Sec. 4.2, we will extend the study to include

non-stationary, semi-periodic and wider spectrum environments

with multiple signal classes, such as in Fig. 1.

4.1 Comparison with non-ML Controllers

We hand-coded four controllers that follow simple, but often e�ec-

tive, behavior rules for RF environments to serve as baselines to

evaluate the DAN-based system robustness:

Random: randomly selects bands in the spectrum. For predic-

tion, it uses a persistent state scheme: each band’s signal state (ac-

tive/inactive) is set to the last observation in it. Initially, all bands

are considered inactive.

Scan: sequentially selects bands in the spectrum, uses the same

persistent state scheme for prediction.

Scan-and-Dwell: estimates the di�erent spec parameters govern-

ing the dynamics of the environment from the sampled observa-

tions. The controller is given ranges for the parameters but does

not know their true values. It traverses the spectrum sequentially

and whenever an action triggers a signal detection, it subsequently

samples the same band until the true parameters controlling the

dynamics in that band are learned, via a process of elimination. The

predicted state is computed for each from the estimated parameters.

Expert: uses the same process as the above controller to estimate

the spec parameters from experience. At each step, it selects the

band with the highest associated uncertainty, i.e., whose current

range of possible values is the largest.

In particular, the Scan-and-Dwell and Expert controllers serve as

reasonable upper bounds on performance since in our experiments

Params A B1 B2 C1 C2 F1 F2 F3

Number 2 [1, 2] [1, 2] [1, 2] 2 1 2 [1, 2]

Width 2 [2, 3] [2, 3] 3 2 3 2 [2, 3]

Period [8, 9] [8, 9] [8, 9] [8, 9] [6, 9] [8, 9] [8, 9] [6, 7]

DutyCyc 4 [4, 5] [4, 5] 4 [2, 5] 4 7 [3, 4]

Band Rand Rand Rand Rand Rand Rand Rand Rand

Start 0 0 [0, 10] 0 0 0 [5, 10] [0, 5]

Table 1: Environment specs: The parameters are de�ned in Sec. 3.1;

E.g. For Spec A, the number of signal-pairs is 2, the width between

signal pairs is 2, the period is randomly chosen from [8,9], the duty

cycle is 4, the band of each signal-pair is randomly chosen and

the signal always starts at time 0. [a,b] means random inclusively

within range [a,b].

Environments

Agent Stat. Non-stat. Multi

ConvLSTM-DAN w/ db_iou 0.62 0.37 0.50

ConvLSTM-DAN w/ in_iou 0.63 0.38 0.48

Predictive-DAN 0.68 0.45 0.44

Infomax-DAN 0.75 0.39 0.52

Table 2: Performance of di�erent DAN con�gurations

and rewards, per environment (best in bold): scores

are cumulative IoU, db_iou is di�erential block IoU

reward, in_iou is instantaneous IoU reward (Sec. 3.2.2).

Stat. refers to a stationary environment, where signals

can appear at any time.

(a) SpecA (b) SpecB2

Figure 5: Training episodes from SpecA (a) and SpecB2 (b).

First row: the full state (bands with signal activity are black

and actions taken are gold squares). Second row: predicted

state (M-net output) with signal probability in gray-scale

(white = 0, black > 0.5) and blue dots are real signal. Third row:

Q-net output (q-values) in gray-scale with action taken (gold

boxes) and true state (blue dots). Fourth row: IoU rewards per

step, where IoU measures predicted state – true state match.)

they are given relatively small ranges for the di�erent spec parame-

ters around their ground-truth values. In other words, an ML agent

that has been trained in environments whose spec parameters are

similar to those governing the environment on which it is being

evaluated can be expected, at best, to attain a performance similar

to that of the best hand-coded controller.

Fig. 6 compares the performance of hand-coded controllers and

ConvLSTM-DAN trained in only one environment spec (SpecA)

and tested in multiple environment specs (SpecA and SpecB1). In

Fig. 6a the controllers were tested in environments from SpecA.

The Expert and Scan-and-Dwell controllers (which are given SpecA

Model Sep. Dense Shared Dense Shared Conv.

IoU 0.17 0.25 0.35

Parameters 82216 89858 39234

Table 3: Our Shared ConvLSTM model converges faster to a

higher accuracy (IoU) than original DANmodels. Both shared

models have more layers than Sep.Dense

to estimate each sampled environment parameters) correctly pre-

dict the signal from C = 35. ConvLSTM-DAN achieves a good

performance because it was trained on SpecA environments. Then,

when tested on SpecB1 environments while being given SpecA to

estimate the parameters (Fig. 6b), the hand-coded solutions fail to

correctly predict the out-of-distribution signals. In contrast, the

ConvLSTM-DAN, trained only in SpecA, shows more robustness to

changes in environment dynamics.

4.2 ConvLSTM, Predictive and InfoMax DAN

ConvLSTM-DAN vs. original DAN.We compare our ConvLSTM-

DAN model (a shared architecture) with the models used in the

original DAN: Separate Dense ("-net and &-net are separate net-

works with dense layers followed by an LSTM layer) and Shared

Dense (a single network with shared initial layers and separate

outputs for "-net and &-net). The ConvLSTM-DAN layers can

scale arbitrarily with respect to number of frequencies without a

corresponding increase in the number of model parameters and as

a result it converges much faster to a better accuracy as shown in

Table 3.

Predictive, InfoMax vs. ConvLSTM-DAN. We evaluate their

performance in environments with distinct challenges: (i) Station-

ary (simplest): a range of patterns (period, duty-cycle) and signal

numbers (1-3); (ii) Non-stationary (more challenging and realis-

tic): narrower range of patterns, but signal patterns and locations

randomly change during episode; (iii) Multi-class wide spectrum

environment (most realistic): multiple signal classes with di�erent

behaviours (signal modulations), aperiodic, random activity and

more bands (100 vs. 20). In (iii), observation and internal state in-

cludes objectness (is signal present) and signal class score (softmax

score vector). Also added multi-class loss, metrics and rewards.

(a) SpecA environments

(b) SpecB1 environments

Figure 6: Comparison: hand-coded controllers expecting

SpecA vs. ConvLSTM-DAN only trained in SpecA environ-

ments: (a) testing in SpecA; (b) testing in SpecB1. Hand-coded

performance degrades signi�cantlymore than DANwhen en-

vironments deviate from expected/training spec. Plot: Block

IoU vs. time; 100 sampled test environments per spec.

Table 2 shows the results of our approaches. Notice that InfoMax

performs best in stationary environments, where the signal param-

eters vary a lot from episode to episode, but within the episode,

they are stationary. Predictive-DAN is best at non-stationary envi-

ronments, and RL methods (as opposed to non-RL based InfoMax)

seem to perform best there. InfoMax-DAN seems to perform best at

complex multi-class environments. It also shows that our designs

can scale in frequency.

4.3 Experience Feedback (Field Spec Estimation)

We now cover our results in leveraging experience feedback via

�eld spec estimation and controller retraining using the estimated

spec, while �eld state estimation is covered in Sec. 4.4. For these

experiments, our Predictive-DAN is the ML-based controller used.

Estimating Spec from Feedback. In Fig. 7a we compare our

approach (4. Field Est on Field) to a scan-and-dwell hand-coded

control where �eld spec is within-distribution (5.Expert on Field)

and also to our ML controller alternatively trained (1.-3.). The hand-

coded controller takes a long time to reduce uncertainty (large

search space). A DAN controller trained on lab alone cannot cope

with �eld (2. Lab on Field). By learning estimated �eld spec without

ground truth (GT), our approach has similar performance to training

on �eld spec with GT (3.Field on Field, see also analogous 1.Lab on

Lab).

Estimating Spec from Retraining. In Fig. 7b, we compare a

controller (4. Re Lab Field Est) trained on Lab spec, then re-trained

on a mix of estimated �eld spec (0.7 weight) + Lab spec (0.3 weight)

to a scan-and-dwell hand-coded controller (5. Expert) and also to our

ML controller alternatively trained (1.-3.). For this experiment, Field

Spec and Lab Spec di�er in number of signals (1 vs. 2, respectively)

and width between signals (3 vs. 2), and we sample a mix of both

specs for testing. Controllers trained on only one spec (1. Lab,

2. Field) cannot cope with environments from multiple specs. The

controller retrained only on estimated �eld spec (3. Re Field Est)

su�ers from “forgetting” and cannot cope with environments from

it’s initial training spec. By retraining on both specs (weighted), the

controller has the best performance.

Boostrapping. In Fig. 8, we consider a bootstrap loop with 3 itera-

tions, where the ground-truth �eld spec parameters di�er slightly

from the previous iteration’s (lab spec used is A and the three �eld

specs are F1-F3 in Table1). The idea is to expose a controller to en-

vironments of variable complexity. The results for the last iteration

are shown in Fig. 8, where we evaluate against all environment

specs (lab + 3 �eld). The detection rate (≈ 60%) of the controller with

estimated specs (1. Retrain Estimated) is close to that of controller

using GT specs (3. Retrain Ground Truth) ≈ 65%. Hence, training

with GT loses advantage over training with estimated specs over

multiple iterations as the agent is exposed to more and more types

of environments. We can also see that re-training DAN controller

leads to smooth adaptation and using only current estimated spec

(2.Cur Estimated) results in poor performance.

4.4 Experience Feedback (Field State
Estimation)

Instead of estimating the parameters of a �eld spec, which is then

used to train a controller, we can perform Field State Estimation: do

ML-based estimation of the full �eld/spectrum state (2. in Fig. 4)

from partially observed �eld observations (1. in Fig. 4), and then

use these reconstructed full-state episodes directly to retrain our

ML controller, as described in Sec. 3.3.2. The ML-based estimation

is done by a generator that is trained o�ine, separately from DAN.

Once trained, it then generates one full-state episode from one

partially observed �eld episode. In Table. 4, we compare the �eld

state estimation approach to a controller exhaustively trained on an

(anticipated) lab spec and one trained on the ideal training source:

the �eld spec with complete ground truth information. We also

study the performance after training with di�erent numbers of re-

constructed full-state episodes (25, 50, 100). Finally, we compare the

approach with �ne-tuning a controller in the �eld alone using par-

tially observed prediction rewards—reward only what you observe

in the band sampled and no error information using GT in other

bands. For these experiments, we use SpecC1 (Table 1) for the lab

spec and SpecC2 for the �eld spec. Throughout these experiments,

evaluations of all training con�gurations are done on the same 100

�eld spec episodes (not used in training) and Predictive-DAN is the

controller used.

(a) (b)

Figure 7: Test results plotting timesteps vs. Block IoU comparing: (a) Estimating

Spec from Feedback. (b) Estimating Spec from Retraining. (Block IoU of 5 steps.)

Figure 8: Comparison of DAN vs Ex-

pert controllers for the bootstrapping ap-

proach: performance on 3rd (last) itera-

tion shown. (Block IoU of 5 steps.)

Training approach Block IoU

1 Trained with lab spec only 0.58

2 Retrained w/ 25 estimated �eld state episodes 0.53

3 Retrained w/ 50 estimated �eld state episodes 0.70

4 Retrained w/ 100 estimated �eld state episodes 0.72

5 Training w/ �eld spec and full GT 0.75

6 Finetuned w/ 100 partially observed �eld episodes 0.43

Table 4: Experience feedback using Field State Estimation

(rows 2-4), compared with training on (1) lab only, (5) �eld

with full GT and (6) partially observed �eld episodes. Block

IoU over last 33 steps.

The �rst row in Table. 4 corresponds to DAN trained with the

lab spec, with no �eld experience and 1000 unique episodes. We

can see that the performance is poor. The next three rows (2-4)

correspond to DAN retrained with 25/50/100 estimated full-state

�eld episodes mixed with 25/50/100 lab spec episodes, respectively.

We can see that performance improves when the lab controller

is retrained with more estimated �eld episodes. The �fth row in

Table. 4 corresponds to training from the �eld spec with full ground

truth and for 1000 unique episodes. This result roughly corresponds

to the best possible performance of DAN given GT. As we can see,

in this case, retraining DANwith 100 estimated �eld episodes (using

no GT) has similar performance to training DAN with �eld GT and

1000 episodes.

The result of evaluating the DAN controller �ne-tuned directly

on 100 partially observed �eld episodes alone is shown in the last row

(6) of Table. 4. For this case, we modi�ed training for DAN accord-

ingly to accommodate partially observed states, i.e., we have ground

truth information only in the particular band sampled instead of all

the bands previously—hence the reward obtained by"-network is

limited to the prediction only in this band. We can see that its per-

formance is inferior compared to training with full-state episodes,

even when those complete states are estimated (row 4 of Table. 4).

Partial observations in sparse, dynamic signal environments makes

training di�cult.

In summary, we show that retraining a DAN with full-state

sequences estimated using ML-based generators from partially ob-

served �eld observations is a viable and promising approach, while
�ne-tuning a DAN directly on partially observed �eld experiences

produces poor results in general.

5 CONCLUSION AND FUTUREWORK

Novel RL-based approaches for information gain under partially

observable, non-stationary and reward-sparse environments are

presented and applied to the complex problem of RF spectrum

monitoring, where the task is to identify signals with distinct be-

havioral patterns at variable frequencies. The proposed solution

accounts for scalability and translation-invariance challenges of the

signals in frequency-time space. We also propose information gain

rewards to encourage exploration of unseen signals. Additionally,

we developed two model-based RL approaches for the di�cult task

of retraining/�ne-tuning a lab-trained controller using experience

feedback from limited �eld deployment without ground-truth. Sim-

ulation results indicate that our approach outperforms previous

RL and hand-coded solutions. We also show promising results for

retraining our ML controller using limited �eld experience.

For future work, we plan on studying adversarial environments

with competitive multi-agent learning and complex control surfaces

with action representation learning. Also, we plan to investigate

the use of GANs to generate training sequences from sparse �eld

samples.

ACKNOWLEDGMENTS

This material is based upon work supported by the Defense Ad-

vanced Research Projects Agency (DARPA) and Space and Naval

Warfare Systems Center, Paci�c (SSC Paci�c) under Contract No.

N66001-18-C-4044.

Disclaimer: The views, opinions, and/or �ndings expressed are

those of the author(s) and should not be interpreted as representing

the o�cial views or policies of the Department of Defense or the

U.S. Government.

REFERENCES
[1] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez,

and Sergey Levine. 2018. Model-Based Value Estimation for E�cient Model-
Free Reinforcement Learning. CoRR abs/1803.00101 (2018). arXiv:1803.00101
http://arxiv.org/abs/1803.00101

[2] Horacio Franco, Chris Cobo-Kroenke, Stephanie Welch, and Martin Graciarena.
2020. Wideband Spectral Monitoring Using Deep Learning. In Proceedings of the
2nd ACM Workshop on Wireless Security and Machine Learning (Linz, Austria)
(WiseML ’20). Association for Computing Machinery, New York, NY, USA, 19–24.
https://doi.org/10.1145/3395352.3402620

[3] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. 2020.
Dream to Control: Learning Behaviors by Latent Imagination. In International
Conference on Learning Representations. https://openreview.net/forum?id=
S1lOTC4tDS

[4] Albert Haque, Alexandre Alahi, and Li Fei-Fei. 2016. Recurrent attention models
for depth-based person identi�cation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1229–1238.

[5] Yuxiu Hua, Rongpeng Li, Zhifeng Zhao, Honggang Zhang, and Xianfu Chen.
2019. GAN-Based Deep Distributional Reinforcement Learning for Resource
Management in Network Slicing. In 2019 IEEE Global Communications Conference
(GLOBECOM). 1–6. https://doi.org/10.1109/GLOBECOM38437.2019.9014217

[6] Jie Huang, Rongshun Juan, Randy Gomez, Keisuke Nakamura, Qixin Sha, Bo He,
and Guangliang Li. 2021. GAN-Based Interactive Reinforcement Learning from
Demonstration and Human Evaluative Feedback. CoRR abs/2104.06600 (2021).
arXiv:2104.06600 https://arxiv.org/abs/2104.06600

[7] Michael R James and Satinder Singh. 2009. SarsaLandmark: an algorithm for
learning in POMDPs with landmarks. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1. 585–591.

[8] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Plan-
ning and acting in partially observable stochastic domains. Arti�cial Intelligence
101, 1 (1998), 99–134. https://doi.org/10.1016/S0004-3702(98)00023-X

[9] Gabriel Kalweit and Joschka Boedecker. 2017. Uncertainty-driven Imagination
for Continuous Deep Reinforcement Learning. In Proceedings of the 1st Annual
Conference on Robot Learning (Proceedings of Machine Learning Research, Vol. 78),
Sergey Levine, Vincent Vanhoucke, and Ken Goldberg (Eds.). PMLR, 195–206.
https://proceedings.mlr.press/v78/kalweit17a.html

[10] Sammie Katt, Frans A Oliehoek, and Christopher Amato. 2017. Learning in
POMDPs with Monte Carlo tree search. In International Conference on Machine
Learning. PMLR, 1819–1827.

[11] Merima Kulin, Tarik Kazaz, Ingrid Moerman, and Eli De Poorter. 2018. End-to-
End Learning From Spectrum Data: A Deep Learning Approach for Wireless
Signal Identi�cation in Spectrum Monitoring Applications. IEEE Access 6 (2018),
18484–18501. https://doi.org/10.1109/ACCESS.2018.2818794

[12] Lianjun Li, Lingjia Liu, Jianan Bai, Hao-Hsuan Chang, Hao Chen, Jonathan D.
Ashdown, Jianzhong Zhang, and Yang Yi. 2020. Accelerating Model-Free Re-
inforcement Learning With Imperfect Model Knowledge in Dynamic Spec-
trum Access. IEEE Internet of Things Journal 7, 8 (2020), 7517–7528. https:
//doi.org/10.1109/JIOT.2020.2988268

[13] Gihan J. Mendis, Jin Wei, Ariuna Madanayake, and Soumyajit Mandal. 2019.
Spectral Attention-Driven Intelligent Target Signal Identi�cation on a Wideband
Spectrum. In 2019 IEEE Cognitive Communications for Aerospace Applications
Workshop (CCAAW). 1–6. https://doi.org/10.1109/CCAAW.2019.8904904

[14] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014.
Recurrent Models of Visual Attention. In Proceedings of the 27th International Con-
ference on Neural Information Processing Systems - Volume 2 (Montreal, Canada)
(NIPS’14). MIT Press, Cambridge, MA, USA, 2204–2212.

[15] ThomasM.Moerland, Joost Broekens, and CatholijnM. Jonker. 2020. Model-based
Reinforcement Learning: A Survey. ArXiv abs/2006.16712 (2020).

[16] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. 2017.
Curiosity-driven exploration by self-supervised prediction. In International con-
ference on machine learning. PMLR, 2778–2787.

[17] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs.CV]

[18] Yash Satsangi, Sungsu Lim, Shimon Whiteson, Frans A. Oliehoek, and Martha
White. 2020. Maximizing Information Gain in Partially Observable Environments
via Prediction Rewards. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems (Auckland, New Zealand) (AAMAS
’20). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 1215–1223.

[19] Yash Satsangi, Shimon Whiteson, Frans A Oliehoek, and Matthijs TJ Spaan.
2018. Exploiting submodular value functions for scaling up active perception.
Autonomous Robots 42, 2 (2018), 209–233.

[20] Matthew E. Taylor and Peter Stone. 2009. Transfer Learning for Reinforcement
Learning Domains: A Survey. J. Mach. Learn. Res. 10 (dec 2009), 1633–1685.

[21] Hado van Hasselt, Arthur Guez, and David Silver. 2015. Deep Reinforcement
Learning with Double Q-learning. arXiv:1509.06461 [cs.LG]

[22] Leye Wang, Wenbin Liu, Daqing Zhang, Yasha Wang, En Wang, and Yongjian
Yang. 2018. Cell Selection with Deep Reinforcement Learning in Sparse Mobile
Crowdsensing. In 2018 IEEE 38th International Conference on Distributed Comput-
ing Systems (ICDCS). 1543–1546. https://doi.org/10.1109/ICDCS.2018.00164

[23] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. 2016. Dueling Network Architectures for Deep Reinforcement
Learning. arXiv:1511.06581 [cs.LG]

[24] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning ap-
proach for precipitation nowcasting. In Advances in neural information processing
systems. 802–810.

[25] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. 2020. Transfer Learning in Deep
Reinforcement Learning: A Survey. ArXiv abs/2009.07888 (2020).

https://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1803.00101
https://doi.org/10.1145/3395352.3402620
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS
https://doi.org/10.1109/GLOBECOM38437.2019.9014217
https://arxiv.org/abs/2104.06600
https://arxiv.org/abs/2104.06600
https://doi.org/10.1016/S0004-3702(98)00023-X
https://proceedings.mlr.press/v78/kalweit17a.html
https://doi.org/10.1109/ACCESS.2018.2818794
https://doi.org/10.1109/JIOT.2020.2988268
https://doi.org/10.1109/JIOT.2020.2988268
https://doi.org/10.1109/CCAAW.2019.8904904
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1509.06461
https://doi.org/10.1109/ICDCS.2018.00164
https://arxiv.org/abs/1511.06581

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 State Estimation and Tracking
	3.2 DAN framework
	3.3 Experience-feedback via Model-based RL

	4 Performance Evaluation
	4.1 Comparison with non-ML Controllers
	4.2 ConvLSTM, Predictive and InfoMax DAN
	4.3 Experience Feedback (Field Spec Estimation)
	4.4 Experience Feedback (Field State Estimation)

	5 Conclusion and Future Work
	Acknowledgments
	References

