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ABSTRACT

An ongoing challenge in Multi-Agent reinforcement learning (MARL)
is to develop algorithms which can leverage very limited amounts
of experience to coordinate with new teammates. Recent work have
focused on generating diverse training partners and generalizing
to those partners. In this paper, we propose a modular solution
called Multi-Armed Two-way Command Heuristic (MATCH) that
can be added on to existing agents to learn a command hierarchy
within a single episode so that a group of agents may approach the
competency of the best agent in the group. We view learning to
communicate as a set of non-stationary multi-armed bandit (MAB)
problems where each agent has dedicated incoming and outgoing
command MAB samplers that adjusts their policies. When giving
commands, each agent’s goal is to choose the subject who is most
likely to follow their command. When receiving commands, each
agent uses it’s own estimate of the expected benefit of following
a particular commander to decide who to follow. We show that
competent agents are able to quickly adapt to incompetent team-
mates by commanding and ignoring them whereas incompetent
agents learn to follow commands from more skilled teammates. If
pre-trained agents are capable of sending or receiving commands
before adding our communication structure, the agent’s desired
actions are used as a prior distribution which will influence the
MAB samplers to mitigate exploration regret.
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1 INTRODUCTION

One of the main challenges of MARL as opposed to a traditional
reinforcement learning (RL) is the problem of nonstationary envi-
ronment dynamics [21]. MARL algorithms often use centralized
training / parameter sharing [13, 21], low learning rates, or learned
gradient-based communication [25] to address the problem of non-
stationary environment dynamics. These techniques stabilize the
environment by ensuring that agents have a good estimate of the
behavior of other agents either because they change slowly with
low learning rates, or because they have centralized information
through duplicated parameters or communication. The problem we
attempt to solve in this research is a special case of non-stationarity
where agents have to work with never before seen teammates [18].
One approach is to treat other policies as a part of the environment
to be generalized away by training with a diverse set of agents.
Recent work with this approach has shown success in zero and
few-shot scenarios through opponent modeling [2], other play [8],
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and an evolutionary strategy using two populations to keep diverse
pairings between agents [24]. Other studies use Social Learning to
allow agents to learn by observing their successful teammates [6, 9]
or a hand picked command structure where one agent Coaches it’s
teammates from a global perspective [11]. Alternatively, one may
utilize recent advances in RL sample efficiency such as Transfer
learning [19, 26], Meta learning [5, 17, 23], or semantic embed-
ding [15] to allow an agent to simply learn it’s policy within a few
episodes where adapting to each set of partners is an RL task and
the meta-level task is to learn how to adapt to all partners.

This paper takes a different approach. Rather than updating the
parameters of a trained policy, we use a communication frame-
work composed of incoming and outgoing commands to enable
better group performance in a zero shot scenario. Both incoming
and outgoing command selections are treated as non-stationary
multi-armed bandit, (MAB), problems [10] where the outgoing MAB
learns which teammates are likely to listen and the incoming MAB
learns which teammates’ commands are worth following. A com-
mand in this context is an action provided by one agent, the speaker,
to another agent, the listener. The listener may then choose to take
either the action contained in the command or it can choose an
action based on it’s own policy.

Our approach serves as an augmentation to existing agents such
as ones trained with the MARL algorithms mentioned above. If
giving and receiving commands is already a part of an agent’s
capabilities, that agent’s choices, with regard to commands, can be
used as a prior distribution to our method based on the agent’s view
of the current state of the environment. This approach combines
prior state-based information with limited recent experience with
particular names teammates to create an enhanced model. Our
algorithm allows agents to quickly adapt to new teammates without
risking policy collapse by quickly retraining large models.

2 MULTI-ARMED TWO-WAY COMMAND
HEURISTIC (MATCH)

We now present details of our approach to a decentralized learning
of a command hierarchy by agents.

2.1 Learned Value of Commands

From the perspective of an agent a; € A where A is the set of
agents in the environment, an outgoing command is a suggested
action given by a; to some other agent a; € A. An incoming com-
mand for agent q; is a suggested action from agent a; to agent a;.
The selection of outgoing commands is modeled as a multi-armed
bandit problem where the reward for instructing a; € A is 1if a;
follows the command, and -1 if it does not. Note that an agent may
command itself when i = j, which is desirable in the case that other
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agents stop listening due to a; sending poor commands. The outgo-
ing MAB problem is necessarily non-stationary because teammates
may change their probability of listening over time. The reward for
incoming commands is based on the recipient agent’s estimation
of advantage after following a command. While listening, agent’s
must estimate either a value function V (s) or a Q function Q(s, a)
to evaluate if the command helped. Advantage, A, is calculated with
either of the following equations.

A=r+yV(see1) = V(st),

A =1t +yQ(se+1, are1) — Q(st, ar).
Here, s; refers to the state at time t and a; refers to the action taken
at time ¢. The discount factor y accounts for the discount for future
rewards, and r; is the reward received at time ¢.

If an agent chooses to follow a command, the advantage will
serve as an estimate of whether the command was better or worse
than the agent expected to do on it’s own. Agents will learn to
listen to instructions coming from agents resulting in a positive
advantage and they will learn to instruct agent’s that follow them
most often. A natural, and effective, "command" hierarchy can
emerge where agents listen to more competent teammates and
instruct less competent ones.

2.2 Incorporating Prior information

In addition to the learned value of giving and receiving commands
based on particular pairs of agents, it may be useful to base decisions
on context. One option is to model communication as a contextual
multi-armed bandit problem, but we believe that learning contextual
interactions on top of pair-wise relations for arbitrary environments
is not feasible given the data limitations of the zero-shot scenario.
If the agent’s are capable of giving commands before our system
is introduced, then their commands are used as prior information
to the MAB. We used three families of MAB samplers to solve the
incoming and outgoing communication problem where the hyper-
parameters prior strength, p, and experience strength, e, are used
by a sampler to determine how quickly an agent will adjust from
it’s own policy to new information about a teammate.

Ht = 90 +pdt+ert (1)

The sampler estimate, 0;, in equation 2.2 is a linear combination
of an initial value, 6y, a desired action generated by the pre-trained
agent d; multiplied by the prior strength, p, and recent rewards for
communication, r;, multiplied by the experience strength, e. The
first sampler used is a Thompson Sampler [22] based on the Dirich-
let distribution [16]. For e-greedy and UCB sampling [10], we used
a constant learning rate to serve the non-stationary nature of the
problem where the reward for pulling a given arm is the observed
advantage. 0; represents the set of as for the Dirichlet distribution
in Thompson sampling, and the estimated mean rewards for each
arm in the e-greedy and UCB approaches.

2.3 Algorithm

We now describe the basic flow of the learning algorithm in MATCH.
Given a set of pre-trained agents A, initialize two MAB samplers
for each agent where the number of arms in each sampler is equal to
the number of agents |A|. One sampler will serve as the incoming
or listening sampler that will decide which commands to follow,

and the other will serve as the outgoing or speaker sampler that
will choose which agents to command. At each time-step, allow
agents to communicate in addition to their actions to update their
samplers with recent experience.

Algorithm 1: MATCH algorithm

1 Input: Set of agents A, environment E, Prior weight: p,

Evidence weight: e, Discount Factor: y;
2 foraie Ado

3 a.inMAB «— MAB_Sampler(|A|, p,e);

a | a.outMAB «— MAB_Sampler(|A|, p,e);

5 obs,done = E.start;

6 while not done do

7 c_dirs « O|a|x|a|, commands < O|A|x|A|;

8 for ajie Ado

9 t « a.outMAB.sample(prior = a.target(obs;));
10 c_dirs;j «—1;

11 commands;,; < a.command(obs;, t);

12 commands;; < a.policy(obs;);

13 actions « list(size = |A|),l « list(size = |A]);

14 c_rewards < O|z[x|A|s

15 for aic Ado

16 if sum(c_dirs; ) > 0 then

17 recieved < c_dirs; ;

18 recieved; «— 1;

19 l; « a.inMAB.sample(choices = recieved);
20 forc, j € c_dirs;« do

21 if ¢ > 0 and ;! = j then

22 L Aj.outMAB.update(r = —1,arm = i)
23 elseif ¢ > 0 and [; == j then

24 L Aj.outMAB.update(r = 1,arm = i)
25 | actions; < commands;,;

26 else

27 actions; < commands; ;;

28 I «— —1;

29 n_obs,r,done < E.step(actions);

30 foraic Ado

31 if [; > —1 then

32 Adv «— (ri+y*a.V(n_obs)) — a.V(obs);
33 L a.inMAB.update(r = Adv, arm = I;);

34

In Algorithm 1 below [ refers to a matrix which keeps track of
which agents listened to the commands of other agents during a
given step, Omxn refers to the zero matrix of dimensions m and n.

3 BENCHMARK ENVIRONMENTS

We now introduce the environments we used to evaluate our MATCH
framework.



3.1 Generic Communication Environment

The first environment we experimented with was designed to show
a minimal representation of the problem of learning a command
hierarchy. The environment contains three agents and an advan-
tage matrix, A, which specifies the expected advantage, A;; =
E[Adv(a;, a;j)], that an agent a; obtains when listening to a;’s com-
mands. Additionally, E[Adv(a;,aj)] = 0 when i = j because an
agent should do as well it expects when receiving no commands
from other agents. At each time step, one of the three agents is
chosen at random to send a command to a listener which it will
select based on it’s outgoing MAB model. The targeted listener of
that command will then either follow or ignore the command based
on it’s incoming MAB model for that commander. The commanders
outgoing MAB model will receive a 1 or 0 reward depending on
if the listener followed the command or not. If the command is
followed, a reward for the incoming MAB model is generated as
follows. The advantage recorded in the advantage matrix at A;;
is used as the mean to a normal distribution with a variance of
0.25 to sample a value for the advantage of that command. The
normal distribution represents a stochastic environment with an
approximate value function which would be used to calculate the
advantage for having listened to a command.

3.2 Cart Pole Listener

The second environment we use is OpenAI Gym’s Cart Pole [4]
environment where one agent, the listener, is playing the game
and another agent, the speaker, is giving instructions. For each
experimental run, one policy is chosen to be the listener and another
to be the speaker. At each time step, the speaker gives the listener
a command and the listener must decide to follow that command,
or to follow it’s own policy instead. The reward is the number of
frames that the cart is able to balance the pole before either the
pole falls or the cart drifts too far from the origin.

3.3 MARL Grid world

The next environment used in this paper is an 8x8 grid world with
four agents and consisting of multiple paths and pits. Each agent
receives a small negative reward for moving along a path and a
large positive reward for reaching the exit. Agents are given a large
negative reward and are forced to move randomly if they enter a
pit. The game ends when all agents exit. Due to individual rewards,
the value function for an optimal agent in this environment was
solved using policy iteration [7].

3.4 Modified Reference Environment

The final environment we experiment with allows for speaking,
listening, and the incorporation of prior information from com-
munication capable agents to improve team performance. This
environment is a modified version of the MPE simple reference
environment [12, 14] found in The Farama Foundation’s Petting
Zoo API [20]. Our modified version of this environment is made
up of three agents and three landmarks. Each agent is randomly
assigned a landmark as their goal. Agents do not know their own
goal, but they do know the assigned goals of their teammates. An
agent’s individual reward is calculated as the negative square of
its distance from its own goal. Agents are also rewarded globally

Comparison of Samplers for Environment Abstraction
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Figure 1: The accuracy of each sampler over time about
whether each possible command relationship is advanta-
geous or not in the Generic Communication Environment.

based on the average squared distance of all three agents to their
goals. We modified the environment to allow for three agents in-
stead of two, and to allow for agents to give each other commands
rather than an arbitrarily learned vocabulary of nine words as in the
original environment. Each agent observes its velocity, its relative
position with respect to each landmark as well as to each other
agent, and the commands received from the other agents. We also
used only the continuous action version of the environment. Each
agent is able to send a message in this environment at every time
step and that message is acted on or ignored in the next time step.
We wanted to use this environment as a more realistic scenario
where agents are mostly competent, rewards are stochastic and
dependant on group performance, and any agent can communicate
with any other agent on a given step.

4 RESULTS

We now present experimental results with MATCH on each of the
environments introduced in the previous section. When not spec-
ified, the value functions used for each experiment’s advantage
calculations were approximated using a two layer Multi-Layer Per-
ception (MLP) Neural Network with ReLU [1] activation functions
and layer sizes [64,64]. The networks were trained using Bellman
squared error [3] between the value network and the recorded dis-
counted rewards for each episode after 100 episodes of play for
each policy.

4.1 Generic Communication Environment

We ran 100 experiments with MATCH in this domain and recorded
the number of times each agent was correct about the sign of the
advantage for it’s given communication options (results are pre-
sented in Figure 1 where the vertical axis is the percent of the time
that the sign of the advantage for listening to each other agent was
correct at each time step). The three dashed lines represent the
listening MAB samplers while the solid lines represent the com-
manding MAB samplers. During the early time steps, the listening



L\S P1 P2 P3 P4

P1 0.97, 4% 79, 66% 201,90% 262,97%
P2 3.9,5% 0.26,0.1% -18,-5% 6.4,1%
P3 106, 64% 12, 3% 7.1,1% 1.2,0.2%
P4 115, 60% -16,-3% -1.6,-0.3% -4.6,-1%

Table 1: Cart Pole Listener: Each cell represents both the
absolute and percent difference when the agents used our
algorithm to listen to another agent compared to listening
randomly.

samplers have very few examples and so they listen close to ran-
domly. During this time, the outgoing MAB samplers are unable to
differentiate between the different agents based on how often they
listen. This graph highlights a common behavior with our model in
that without prior information the outgoing MAB samplers will lag
behind the incoming MAB samplers before the latter start to stabi-
lize. E-Greedy, UCB, and Thompson sampling perform comparably
in our environments but Thompson sampling performs the best in
most cases. Therefore, we report the results from using MATCH
with Thompson sampling for the remaining environments.

4.2 Cart Pole Listener

We ran the cart pole problem for 100 episodes where the listener’s
experience with it’s speaker is reset before each episode to measure
zero-shot performance. We compared our algorithms performance
with a listener that chooses to follow or ignore commands with a
probability of 0.5. For this experiment, we used four policies with
mean scores of 22, 203, 484, and 498 respectively when playing
with no communication. We ran every combination of policies
for a total of 16 experiments where no learning is done when a
policy is paired with itself as both speaker and listener. The average
score when running all four policies without no communication
is 301. With random mixing, the score across all combinations of
policies increases 355, and with our learning algorithm it increases
to 447. We present, in Table 1, the actual and percent differences in
average score between our algorithm and that with random policy
mixing. For cases where policies choose the same actions often,
such as with policies three and four, our algorithm is not able to
differentiate policy quality well within a single episode, and hence
performs comparable to randomly listening. When agent strategy’s
are varied, e.g., with player 1 and 3, our algorithm significantly
improves performance.

4.3 MARL Grid World

For the MARL Grid World environment, we used 4 policies varying
in quality from random to optimal: choosing optimal actions 0%,
30%, 80%, and 100% of the time and choosing randomly otherwise.
Each agent gives a command to an agent of it’s choice. If an agent
is given multiple commands, it must choose only one to follow. For
this experiment, we ran 5000 trials with no communication, ran-
dom communication, and communication learned using MATCH.
Results from these experiments are presented in Figure 2. The mean
reward for the team as a whole was -9.3 for no communication, -7.7
for random communication, and -4.3 for learned communication.
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Figure 2: Each color represents a single policy’s scores over
the course of the three scenarios: no communication, random
communication, and MATCH in the MARL Grid World.

Scenario \Noise o 0.1 0.4 0.8
Random Communication  -15.47 1551 -15.91
ro 5.79 5.73 5.71
On Policy (no MATCH) -14.28 -14.35 -14.31
ro 5.28 5.30 5.00
Few Shot Avg (5 episodes) -13.86 -14.00 -14.07
| 5.28 5.30 5.00
Few Shot Final episode -13.12 -13.24  -12.89
ro 5.28 5.30 5.00

Table 2: Reference Env: Average and standard deviation (r5)
of policy returns in the Modified Reference environment
with varying noise levels.

4.4 Modified Reference Environment

We present two experiments on the modified reference environment.
For each experiment, we ran 500 trials for each of the four groups
of policies. The first group communicates randomly, and the second
group communicates with a hand programmed algorithm with a
hand chosen probability to communicate. The third group is the
average performance over five episodes where experience gathered
for MATCH is maintained between episodes to measure few shot
performance. The final group shows average performance on the
last episode of each few shot learning trial. In the first experiment
Gaussian noise is added to agent relative location vectors to simulate
sensor inaccuracy. Typical relative location vector magnitudes are
below five. We varied noise levels from a standard deviation of 0.1
to 0.8. We also tested a case where one of the agents is malicious and
gives commands to guide itself and it’s teammates away from the
landmarks to evaluate how MATCH can add robustness to MARL
algorithms against malicious attackers.

In Tables 2 and 3, each row refers to a group of policies run for 500
trials. In the first row, communication is not learned and decisions
are drawn from the uniform distribution. The second row uses



Scenario Good Good Malicious
Random Communication  -21.20 -21.26 -32.43
re 7.07 7.00 11.84
On Policy (no MATCH) -20.46  -21.01 -27.18
To 7.63 7.78 10.67
Few Shot Avg (5 episodes) -21.47 -21.12 -27.28
To 8.05 7.94 11.61
Few Shot Final episode -21.44  -20.63 -24.44
ro 8.92 7.85 10.36

Table 3: Reference Env: Average and standard deviation (r5)
of policy returns in the Modified Reference environment
where one agent is a bad actor that moves and commands in
the opposite direction of the others.

our hand programmed policy which is designed to communicate
efficiently with other competent agents while the third row is the
average over five episodes running MATCH in a few-shot scenario
and the fourth row is the average score of the last episode of the
few show learning scenario.

5 DISCUSSION

In this section we discuss some key properties of MATCH as well
as analyze certain aspects of its performance on the benchmark
environments.

5.1 Sample Efficiency and Data Requirements

An important property of MATCH is sample efficiency. In the
Generic Communication environment, at each time step, one com-
mand is sent. This results in the update of a single outgoing MAB
parameter and a single incoming MAB parameter. There are a total
of |A|? outgoing parameters and a total of |A|? incoming param-
eters as each agent needs to learn two parameters for each other
agent. This means that in the single command scenario, a given arm
of a given bandit sampler is expected to be pulled W times per
time step, or for the parameters used in this particular environment
for our experiments, 11.1 times over the course of an experiment
comprising of 100 time steps.

We may expect to improve on this by allowing each agent to give
a command at every time step such as in the MPE environment.
Listening agents then must use a masked MAB sampler where they
may choose only from the arms on which they have received com-
mands and the arm that represents their own policy. While it might
2| A] 1

21A12 T A

expected samples per arm per time step, this is not tl'llz[l:ase. thl}
actual sample efficiency gained is less than that, and it depends on
a number of factors. Consider the case where all agents sent a com-
mand to agent ag. The agent, ag, will choose one command to listen
to and ignore the rest. This will update one outgoing parameter
for each commander, but only a single arm on the listening agent

will be pulled so the expected number of pulls per arm in this case
1| A|+1
2| A2
commands.

seem like this would increase the efficiency up to

is . Efficiency is lost when a single agent receives multiple

The probability of multiple speakers sending commands to the
same listener depends on both the learned outgoing probability
distribution for selecting listeners and also potentially a context
based prior available with a pre-trained agent. Outgoing samplers
get an average of ﬁ samples per time step, but incoming sample
efficiency depends on the probability of conflicts. The expected
number of samples per listening arm per time step, E[ns], based on
the probability of conflicts, is shown in Equation 2, where ¢; € C
and C is the set of all possible sets outgoing commands for a given
time step with cardinality |A|. Here, n¢(c;) is the number of
unique agents that receive at least one command given the set of
commands ¢; and P(c;|6;) is the probability of this set of commands
given our agents outgoing probability parameters at time ¢, ;.

_ 2eec nelei) x P(cil0r)
= AP (2)

When the listening samplers use an uniform distribution, P(c;|6;) =
ﬁ, Ve; € C, the sample efficiency for |A| € {3,4,5,6,7,8} are
respectively [0.235,0.170, 0.134, 0.111,0.094, 0.082] samples per lis-
tening arm per time step. These estimates give a rough idea of the
suitability of our algorithm for tasks with different episode lengths.

There are two more considerations with regards to sample ef-
ficiency. First, when a listener is commanded by a speaker and
no one else, including itself, it may choose either to follow the
speaker’s command, or to follow it’s own policy, but when a lis-
tener commands itself and has no other incoming commands, it
will always follow it’s own policy, i.e., execute the command it gave
itself. If the agent’s internal advantage calculation does not have
mean zero, this biases agents towards themselves, so we treat this
case as if the agent sent no command at all and we do not update
the incoming or outgoing sampler because no choices have been
made. In other words, if an agent does not receive a command from
a teammate, it does not update it’s listening MAB sampler. The
second consideration is when more than one agent command a
single listener. Only one command can be accepted. This makes a
single agent more likely to command that listener in the future, and
other agents become more likely to seek out other listeners. This
behavior causes the number of conflicts to decrease over time as
agents avoid targeting commands to the same listener as each other.
We have found that in practice these two forces tend to balance out
such that the above simplified sample efficiency list is a good rule
of thumb.

E[ns]

5.2 MATCH deficiencies for Zero/Few-shot
learning

There are a few scenarios in which our algorithm should not be
used. First are environments where slight policy changes can cause
greatly degraded performance. For example, if the MARL grid-world
pits cause the agent to restart, a single poor step may cause a perfect
agent to lose ten steps of progress while a single good step for a
random agent may increase it’s odds of completing the maze by
only a fraction of a percent. In this environment, following bad
commands is so much worse for a good agent than it is beneficial
for a bad agent to follow good commands, that our algorithm may
not learn a good command structure fast enough to outweigh the
cost of exploration. In this case, no communication has an average



team score of -6.98 with random communication scoring -9.98 and
our algorithm scoring -7.2 over 5,000 trials. Our algorithm still per-
forms comparable to no communication, but it cannot overcome
the inherent drawback of policy mixing in such an unforgiving
environment within a single episode. Additionally, the sample effi-
ciency calculated in Section 5.1 allows for the estimate of how many
arm pulls are expected, but with poor enough value function ap-
proximation, the number of samples required becomes prohibitive
for zero or few shot learning. This means that in highly stochastic
environments, or environments in which learning a value function
is impossible, our algorithm may not be suitable.

5.3 Modified Reference Environment

This environment is meant to be a more difficult and realistic test for
MATCH. First, sample efficiency is paramount because the episode
length is only 25 time steps. Using our estimations in Section 5.1,
for twenty samples per listening arm, we would need 20/0.235 = 84
time steps, or about 4 episodes. Knowing this, we will use few shot
learning for this environment. Additionally, the reward at each time
step is based on both global and local factors, so approximate value
function accurately is challenging in this environment. Lastly, the
hand-crafted policies for this environment perform well together,
but asymmetric information of this environment means that an
effective command structure can increase agent performance above
that of what the best solo agent can achieve. This combination
make for a challenging but hopeful use case for MATCH.

Our hand-crafted policy works in the following way. If no com-
mands are received, agents move towards the center of mass of the
three landmarks with a 50% probability, or the closest landmark
with a 50% probability. Agents send a command to the furthest ally
half the time, the closer ally one third of the time, and to themselves
one sixth of the time. If there is one incoming command, it will
be listened to with probability 3/4. If two commands are received,
a random one of the two is followed with probability 6/7. These
agents are mostly trusting with no preference between teammates
and their default policy performs very well if teammates are compe-
tent/altruistic. The malicious teammate moved and sent commands
in the opposite direction of what it would have done as a normal
policy.

In first experiment where noise was added to agents, MATCH
was able to make small but statistically significant improvements
over the nearly optimal hand programmed policy in the case of few
shot learning. Given the very limited time steps of 25 per episode,
it is to be expected that multiple episodes are necessary to augment
an already proficient policy. We set the prior weight to 5.0 and the
experience weights to 0.1 and 2.0 for speaker and listener samplers
respectively.

In the malicious agent case, we expected MATCH to do better
initially, but we found that the malicious agent lead to unexpect-
edly negative rewards at each time step which made our advantage
function return large negative values most often. Because the value
function was not accurate given the drastic change in expected re-
wards, the efficiency of MATCH was negatively impacted. MATCH
learns to command agents which show the most improvement, so
both the hand programmed policy, and the policy augmented with
MATCH improved the random agent’s performance, but not their

own. We were able to train MATCH on 50 episode scenario where
each of the agents learned the correct communication relationships,
but team performance only increased by about 5 points on average.
The large sample size was able to make up for a poor value function,
but fifty episodes is too many to be considered few-shot learning
and it may be enough to retrain a potential base policy instead.

5.4 MARL Grid World and Cart Pole

In both of these environments, MATCH was able to learn a com-
mand hierarchy that preserved the best agent’s performance while

significantly improving the weaker agents performances. The greater
episode lengths of around 300 for Cart Pole and up to 100 for the

Gird World allowed our method enough time to learn effective

structure in single episodes a majority of the time. The learnability

of a reliable value function in both of these environments allowed

for MATCH to run very sample efficiently. In the Grid World envi-
ronment in particular, MATCH was ably to raise the performance

of agents one and two greatly while degrading the performance of

top agents only marginally as seen when comparing the learned

bars for each color to their random counterparts in figure 2.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed a modular algorithm, MATCH, which
can be added onto existing agents in order to allow them to commu-
nicate with one another through simple commands. The resulting
emergent communication network features several desirable prop-
erties. The first is that advantageous pairwise relationships tend to
be strengthened while undesirable ones are avoided. This structure
causes team performance to improve as poor agents align their
policies with their best teammates while those skilled teammates
learn to stick to their own policy and we have shown this property
across four environments of varying levels of complexity. Another
desirable property is that our method can utilize pre-existing com-
munication policies that can send commands as a prior distribution
and further augment MATCH which combines context with old
and recent experience without retraining the original agent and
risking policy collapse. In addition, MATCH is completely decen-
tralized. Other agents need not even implement MATCH, for a
given MATCH-capable agent to learn incoming and outgoing re-
lationships, so long as agents are capable of sending or receiving
commands. Lastly MATCH is a very data efficient algorithm for
small numbers of agents with only two tunable hyper-parameters
to adapt to a wide variety of environments. MATCH is also com-
putationally cheap. MATCH can be used with an existing agent
policy and is designed for zero-shot learning, so it requires no train-
ing time besides the burn-in period at the start of an episode and
it requires no large computation to sample a multi armed bandit
model.

For all it’s desirable properties, MATCH has a few weaknesses
that we would like to address in future work. When every agent can
send a message, MATCH currently ignores the cases where an agent
commands only itself in order to avoid a bias towards self-directed
commands. It may be the case that there is a way to leverage the
instances where an agent desires to command itself rather than
its teammates. Another way to improve sample efficiency might
involve a delay to the speaker samplers to avoid the initial stagnant



state where speakers are waiting on listeners to stabilize. Perhaps
the most impactful change of MATCH would be to weaken it’s
dependence on a reliable Value function by exploring longer time
dependencies or finding another way to judge whether an incom-
ing command has been advantageous to follow. We would also like
to develop more concrete advice on tuning the prior experience
and recent reward strength for different environments. In the four
environments tested in this paper, we found that at the end of an
episode, each sampler should have seen around twenty examples
to have sufficient experience to improve performance. The prior
and recent reward weights need to be tuned so that environments
with large rewards do not lead to more greedy samplers than en-
vironments with small rewards. Our sample efficiency discussion
may provide a ballpark estimate about how many steps in an en-
vironment MATCH requires, but a method to provide the proper
scale of sampler fs would help MATCH’s effective deployment.

Beyond simply mechanical improvements, we would also like to
explore similar strategies in other kinds of communication. MATCH
focuses on commands, but it would be beneficial if a similar method
could augment more general pairwise relationships with decisions
involving information sharing or arbitrary learned communication.
Less direct communication may require a more complex judging of
the value of communication than single step advantage approxima-
tions. A more general measure of communication value may open
up the possibility of a MATCH-like architecture which takes more
complicated priors to influence more than the selection of targets
for communication. It also opens the possibility of processing more
than one incoming command at a time, which will further increase
sample efficiency. As the field of MARL expands, we hope to see
a diverse set of methods developed to protect policies from col-
lapsing under novel circumstances or in ad hoc coordination with
new teammates. We also hope that methods like MATCH may be
used to allow artificial agents to almost-always accept input from
humans via simple adjustable prior beliefs for situations without
blindly following bad actors.
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