
Inter-agent Transfer Learning in Communication-constrained
Settings : A Student Initiated Advising Approach

Argha Boksi
Department of Computer Science and Engineering

Robert Bosch Centre for Data Science and AI
Indian Institute of Technology Madras

Chennai, India
argha.boksi@gmail.com

Balaraman Ravindran
Wadhwani School of Data Science and AI

Department of Computer Science and Engineering
Robert Bosch Centre for Data Science and AI

Indian Institute of Technology Madras
Chennai, India

ravi@cse.iitm.ac.in

ABSTRACT
Deep reinforcement learning algorithms have shown promise in ad-
dressing complex decision-making problems, but they often require
millions of steps of suboptimal performance to achieve satisfactory
results. This limitation restricts the application of Deep RL in many
real-world tasks, where agents cannot afford to rely on thousands of
learning trials, particularly when each suboptimal trial is costly. The
teacher-student framework seeks to enhance the sample efficiency
of RL algorithms. In this setup, a teacher agent guides another
student agent’s exploration by providing advice on the optimal
actions to take in specific states. However, in numerous applica-
tions, communication is constrained by factors such as available
bandwidth or battery power. In this paper we consider a student-
initiated advising approach where the student can query the teacher
only a predetermined fixed number of times. We introduce a frame-
work, Ask Important that - (a) ensures effective utilization of the
limited advice budget by querying the teacher only in important
states and (b) makes efficient use of the collected demonstration
data by introducing an additional demonstration buffer. Ask Im-
portant framework can be utilised by RL algorithms(which work
with discrete action spaces and leverage a replay buffer to store and
sample experiences) such as DQN, Double DQN, Dueling DQN etc.
We explain how Ask Important can be integrated within the DQN
algorithm. We compare DQN Ask Important with – DQN(baseline)
and an ablation of our method. We evaluate these algorithms in
three Gymnasium environments – Acrobot-v1,MountainCar-v0 and
LunarLander-v2. The results show that DQN Ask Important – (a)
has better initial performance and (b) reaches the target average
episodic return much faster – than the other two algorithms for all
the three environments.

KEYWORDS
Reinforcement Learning, Teacher-student framework, DQN

1 INTRODUCTION
The integration of modern Deep Learning (DL) techniques with
traditional Reinforcement Learning (RL) approaches has shown
promise [9, 11, 17] in addressing complex decision making prob-
lems. However, these algorithms achieve satisfactory performance
only after undergoing millions of steps of suboptimal performance.
This significantly restricts the use of Deep RL in many real-world

Proc. of the Adaptive and Learning Agents Workshop (ALA 2024), Avalos, Müller, Wang,
Yates (eds.), May 6-7, 2024, Online, https://ala2024.github.io/ . 2024.

tasks. In real-world domains agents - (a) cannot rely on thousands
of learning trials to attain an effective policy, especially when each
sub-optimal trial is costly and (b) should have good on-line per-
formance from the start of learning. For instance, an autonomous
driving agent must not acquire driving skills through the process
of colliding with road barriers and putting the lives of pedestrians
at risk.

Utilizing the experience of a more competent agent [5] has
emerged as one of the most successful strategies in addressing
sample complexity concerns in RL. The Teacher-Student frame-
work [23] is one such paradigm, wherein a teacher agent conveys
instruction to a learner agent in real time with the objective of
expediting the learning process. The teacher agent in this context is
often considered to be an ‘expert’ or a pre-trained agent that already
possesses a good policy for the given task. Using this established
policy, it will instruct another RL agent that is in the initial stages
of learning the same task.

In theory, it is feasible to receive instructions at each time step
of the agent’s learning process. However, in numerous applica-
tions, communication is constrained by factors such as available
bandwidth [18] or battery power, especially when dealing with
standalone robots or wireless sensors. In this work we model com-
munication scarcity by introducing a fixed advice budget [1, 23](i.e.
a maximum number of inter-agent interactions). This imposes a
strict limit on the extent to which agents can communicate.

Previous research has explored two modes of providing ad-
vice: student-initiated [3, 4] and teacher-initiated [23]. In teacher-
initiated advising the teacher initiates the interaction between the
agents. It is assumed that the student’s current state is consistently
conveyed to the teacher. This can result in substantial commu-
nication costs(e.g. high power requirements for operating visual
sensors). Hence, in this paper we consider a student-initiated advis-
ing approach where in the learner independently determines when
to send a query. Once the learner sends its query, the teacher then
provides action advice [23] to the learner. This approach necessi-
tates minimal similarity between teachers and students, requiring
only a shared action set. The agents can employ distinct learning
algorithms. The learner updates its policy based on the provided
advice.

We propose to extend the existing Teacher-Student approaches
by introducing a framework, Ask Important that - (a) ensures effec-
tive utilization of the limited advice budget by querying the teacher
only in important states and (b) makes efficient use of the collected
demonstration data by introducing an additional demonstration

https://ala2024.github.io/

buffer. Ask Important framework can be utilised by RL algorithms
which work with discrete action spaces and leverage a replay buffer
to store and sample experiences. Examples of such RL algorithms
include DQN, Double DQN, Dueling DQN etc. We propose an algo-
rithm, DQN Ask Important which incorporates the Ask Important
framework into the DQN algorithm.

We compareDQNAsk Important withDQN andDQN(Demonstra-
tion in the first K steps) which is an ablation of our method. We
evaluate these algorithms experimentally in three Gymnasium [24]
environments – Acrobot-v1, MountainCar-v0 and LunarLander-v2.
The results show that DQN Ask Important – (a) has better initial
performance and (b) reaches the target average episodic return
much faster(i.e. solves the task in much fewer learning trials) –
than the other two algorithms for all the three environments.

2 RELATEDWORK
Our paper extends and builds upon previous research that explores
the student-teacher reinforcement learning framework [1, 4, 8, 23].
Chernova and Veloso [3] introduced a confidence-based approach
where a learning agent requests demonstrations when it faces un-
certainty about its actions. Unlike the teacher-student framework,
in their approach, the agent solely learns from expert demonstra-
tions without receiving feedback from the environment. In active
imitation learning [7], an agent has the capability to request an
expert for its policy for a specific state. Additionally, the agent
can simulate trajectories and does not seek demonstrations during
execution. Rosman et al. [15] devised techniques for determining
the appropriate moments to provide guidance to an agent, but their
approach assumes that teachers have access to a knowledge base
containing typical agent trajectories.

In scenarios where the instructor is also an automated agent,
the most frequently employed form of instruction is action ad-
vice [13, 23]. The field of learning from demonstrations [2] spans
various research endeavors focused on agents acquiring the capabil-
ity to replicate actions demonstrated by an expert. The demonstra-
tions serve as examples of desired behavior, guiding the agent in
acquiring a policy that can achieve similar outcomes. This approach
is particularly useful in scenarios where exploration is costly or
impractical.

There is also interest in the integration of imitation learning and
RL [22]. Evidence indicates that demonstration data is beneficial
in addressing challenging exploration problems in RL [19]. [16]
considers real-world learning with robots, and therefore, it also
addresses concerns related to online performance. They initially
pre-train the agent using demonstration data before allowing it to
engage with the task. One frequently employed technique involves
merging samples from demonstrations with samples gathered by
an agent into a single experience replay. This ensures the use of
demonstrations throughout the learning process alongside the uti-
lization of new experiences. Human Experience Replay [6] is one
such algorithm that involves the agent sampling from a replay
buffer containing a mixture of both agent and demonstration data.
Replay Buffer Spiking [10] is a comparable approach wherein the
DQN agent’s replay buffer is initiated with demonstration data.
However, there is no pre-training of the agent, and the demonstra-
tion data is not retained permanently. In [25] ,the demonstrations

were stored in a prioritized experience replay alongside the agent’s
own experiences. The demonstration experiences are given a higher
probability of being selected. The idea of storing experiences in two
separate replays was introduced in [14]. When the agent samples
a mini-batch for learning, it samples a specific amount from each
buffer.

3 BACKGROUND
The subsequent sections offer a concise overview of reinforcement
learning and the teacher-student framework.

3.1 Reinforcement Learning
RL [21] involves a series of interactions with the environment,
where actions are taken and rewards, as well as the subsequent
states, are observed. Formally, this entire process can be defined
within the framework of a Markov Decision Process (MDP). An
MDP is defined by a tuple (𝑆,𝐴, 𝑅,𝑇 ,𝛾), which consists of a set of
states 𝑆 , a set of actions 𝐴, a reward function 𝑅(𝑠, 𝑎), a transition
function 𝑇 (𝑠, 𝑎, 𝑠′) = 𝑃 (𝑠′ |𝑠, 𝑎) and a discount factor 𝛾 . In each
state 𝑠 ∈ 𝑆 , the agent takes an action 𝑎 ∈ 𝐴. Upon taking this
action, the agent receives a reward 𝑅(𝑠, 𝑎) and reaches a new state
𝑠′, determined from the probability distribution 𝑃 (𝑠′ |𝑠, 𝑎). A policy
𝜋 specifies the action the agent takes for each state. The agent’s goal
is to find the optimal policy that maximizes the expected discounted
total reward over the agent’s lifetime.

3.2 Q-Learning
Q-learning [26] stands out as one of the most widely used algo-
rithms for addressing sequential decision making problems. The
agent learns a Q-value function. The Q-value, denoted as 𝑄𝜋 (𝑠, 𝑎),
for a specific state-action pair (𝑠, 𝑎) serves as an estimation of the
expected future reward achievable by taking action 𝑎 in state 𝑠 and
then following policy 𝜋 . At each time step, the agent operates with a
greedy policy 𝜋 , selecting an action that maximizes the Q-function.
The optimal value function, 𝑄∗ (𝑠, 𝑎), gives maximum values for all
states and is derived by solving the Bellman equation -

𝑄∗ (𝑠, 𝑎) = E
[
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑠′
𝑃 (𝑠′ |𝑠, 𝑎)max

𝑎′
𝑄∗ (𝑠′, 𝑎′)

]
We can subsequently employ the Value Iteration algorithm to

derive an iterative update formula for learning the Q-values -

𝑄𝑖+1 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′
𝑃 (𝑠′ |𝑠, 𝑎)max

𝑎′
𝑄𝑖 (𝑠′, 𝑎′)

This approach is effective when dealing with relatively small state
and action spaces, allowing the use of a table to manage the Q-
values associated with all state-action pairs. However, when the
state-action space becomes large, it becomes impractical to precisely
compute the optimal Q-value function. Therefore, in Q-Learning, a
function approximator is employed instead.

3.3 Deep Q-Network (DQN)
Deep Q-Network (DQN) algorithm, introduced by Mnih et al. [11],
is an off-policy, value-based temporal difference (TD) algorithm
designed to approximate the Q-function. It is applicable to environ-
ments characterized by discrete action spaces. DQN relies on two

essential components to function effectively. Firstly, it incorporates
a distinct target network, periodically copied from the primary
network every 𝜏 steps, ensuring greater stability in target Q-values.
Secondly, the agent accumulates all its experiences in a replay buffer
𝐷𝑟𝑒𝑝𝑙𝑎𝑦 , which is subsequently uniformly sampled to execute net-
work updates.

3.4 Teacher-Student Reinforcement Learning
The teacher-student framework [1, 4, 8, 23] involves two agents:
a student and a teacher. The teacher has a predetermined policy
𝜋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 for interacting with the environment, while the student
employs a reinforcement learning algorithm to develop its policy
𝜋𝑠𝑡𝑢𝑑𝑒𝑛𝑡 . The teacher can provide guidance to the student at any
state 𝑠 by sharing 𝜋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑠). Both agents must share the same
action space. When the student receives advice, it takes the recom-
mended action, treating it like any other action during the learning
phase. The student updates its policy based on environmental re-
ward signals, as in typical reinforcement learning, with exploration
guided by the teacher’s advice.

In the teacher-initiated advising approach [23], the teacher takes
the lead in initiating interactions between agents. The learner does
not actively seek guidance and relies on the teacher’s discretion for
when and what advice is provided. Conversely, in student-initiated
advising [3, 4], the learner is responsible for instigating interactions.
The jointly-initiated advising approach [1] involves the student
deciding whether to seek the teacher’s attention using student-
initiated methods. Subsequently, the teacher independently decides
whether to provide advice, using teacher-initiated approaches.

3.5 The Notion of State Importance
In certain tasks, certain states hold more significance than others,
and reserving advice for these pivotal states proves to be an effective
strategy. Games frequently exhibit both calm and tense moments.
In specific scenarios, making the correct move can secure a victory,
while an incorrect move can result in defeat. Conversely, in different
situations, any move is deemed acceptable. This intuitive concept
defines state importance. In the context of students as RL agents
with Q-functions, they inherently possess a means to calculate state
importance(𝐼 (𝑠)) [4, 23]. 𝑄 (𝑠, 𝑎) estimates the potential rewards
achievable by taking action 𝑎 in state 𝑠 . If the Q-values for all
actions in 𝑠 are identical, the choice of action is inconsequential,
rendering 𝑠 unimportant. Conversely, if certain actions in 𝑠 have
higher Q-values, the choice becomes significant, indicating the
importance of state 𝑠 . Formally, 𝐼 (𝑠) is defined as:

𝐼 (𝑠) = max
𝑎
𝑄 (𝑠, 𝑎) −min

𝑎
𝑄 (𝑠, 𝑎) (1)

4 APPROACH
We consider a student-initiated advising approach where the stu-
dent can query the teacher only a predetermined fixed number of
times(i.e. limited advice budget). We propose to extend the existing
Teacher-Student approaches by introducing a frameworkAsk Impor-
tant. This framework can be utilised by RL algorithms that – work
with discrete action spaces and leverage a replay buffer to store
and sample experiences. Examples of such RL algorithms include
DQN, Double DQN, Dueling DQN etc. In the following subsections

we explain how the Ask Important framework can be incorporated
into the DQN algorithm.

4.1 Data Gathering Policy
In Vanilla DQN, we typically use 𝜖-greedy or softmax policy to
gather experiences. One problem with these policies is that the
exploration strategy is naive. Agents explore randomly and do
not use any previously learned knowledge about the environment.
Consequently, the agents acquire good policies after undergoing
numerous episodes of suboptimal performance. While this scenario
is acceptable in simulations, many real-world challenges lack such
simulators. In such cases, the agent must learn within the real-
world domain, facing genuine consequences for its actions. This
necessitates the agent to have good online performance right from
the onset of the learning process.

During training student can evaluate the state importance 𝐼 (𝑠)
of a state 𝑠 by computing equation (1) using its own Q-network
(𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡
𝜃

). Student can decide to ask for advice when the value of
𝐼 (𝑠) exceeds 𝑡𝑠𝑖 , where 𝑡𝑠𝑖 is state importance threshold predefined
for the student agent. This idea can be utilized to obtain a data
gathering policy 𝜋𝑠𝑡𝑢𝑑𝑒𝑛𝑡 . Formally,

𝜋𝑠𝑡𝑢𝑑𝑒𝑛𝑡 (𝑠) =

argmax

𝑎
𝑄𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑠, 𝑎) if 𝐼 (𝑠) ≥ 𝑡𝑠𝑖

𝜖-greedy action w.r.t 𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡
𝜃

if 𝐼 (𝑠) < 𝑡𝑠𝑖
(2)

Agent takes the teacher suggested actions in ‘important’ states
and acts autonomously in other states. This approach has two
key advantages. Firstly, it ensures better online performance than
𝜖-greedy or softmax policies because the student’s exploration
is guided by the teacher. Secondly, querying the teacher only in
‘important’ states reduces the communication overhead and ensures
that the demonstration buffer gets filled with more informative
demo experiences.

Algorithm 1 Data Gathering Policy
Get an initial observation 𝑠 ⊲ start of training
𝑡𝑠𝑖 = 0 ⊲ threshold initialized to 0
𝑙𝑖𝑠𝑡 = {} ⊲ for storing 𝐼 (𝑠) values
for 𝑠𝑡𝑒𝑝 = 1, . . . , 𝑀𝐴𝑋_𝑆𝑇𝐸𝑃𝑆 do

𝐼 (𝑠) = max
𝑎
𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡
𝜃

(𝑠, 𝑎) −min
𝑎
𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡
𝜃

(𝑠, 𝑎)
if 𝐼 (𝑠) ≥ 𝑡𝑠𝑖 then

𝑎 = argmax
𝑎

𝑄𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑠, 𝑎) ⊲ teacher demonstration

else
𝑎 = 𝜖-greedy w.r.t 𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝜃
⊲ autonomous execution

𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐼 (𝑠))
𝑡𝑠𝑖 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑙𝑖𝑠𝑡) ⊲ update threshold
take action 𝑎 and get the next state 𝑠
if 𝑠𝑡𝑒𝑝 > 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑡𝑒𝑝 % 𝑡𝑟𝑎𝑖𝑛_𝑓 𝑟𝑒𝑞 == 0 then

sample a batch and update 𝜃 ⊲ standard DQN update
𝑙𝑖𝑠𝑡 = {} ⊲ discard previous 𝐼 (𝑠) values
𝑡𝑠𝑖 = 0 ⊲ reset the threshold to 0

𝜋𝑠𝑡𝑢𝑑𝑒𝑛𝑡 defined in (2) ,assumes the availability of 𝑡𝑠𝑖 even before
the student can begin its training. Also, identifying such a fixed

threshold can be very challenging and often requires extensive
experimentation for many environments. In order to address this,
we propose a modified version of (2) in which we initialize 𝑡𝑠𝑖 = 0 at
the start of training and then we gradually update 𝑡𝑠𝑖 as the student
encounters more states. Algorithm 1 explains our method and
presents how it fits within the DQN algorithm.

Every time we update the parameters of 𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡
𝜃

we — (a) dis-
card the stored 𝐼 (𝑠) values and (b) reset the threshold 𝑡𝑠𝑖 to 0. At a
particular step, the threshold is obtained by averaging the stored
𝐼 (𝑠) values. This process ensures that for a given state both 𝐼 (𝑠) and
𝑡𝑠𝑖 are derived using the same 𝑄-network(i.e. current 𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝜃
).

4.2 Efficient Use of Demonstrations
Student uses two replay buffers to store the gathered experiences. If
the agent takes an 𝜖-greedy action, then the corresponding experi-
ence gets added into the 𝜖-greedy buffer (𝐷𝜖−𝑔𝑟𝑒𝑒𝑑𝑦) and if the agent
takes a teacher-suggested action, then that particular experience
gets added into the demonstration buffer (𝐷𝑑𝑒𝑚𝑜). In our approach
we consider the size of 𝐷𝜖−𝑔𝑟𝑒𝑒𝑑𝑦 to be a hyperparameter and we
do not impose any restriction on it. 𝐷𝜖−𝑔𝑟𝑒𝑒𝑑𝑦 is exactly similar
to the replay buffer used in DQN. If 𝐷𝜖−𝑔𝑟𝑒𝑒𝑑𝑦 is full, the oldest
experience is discarded to make space for the latest one. However
we fix the size of 𝐷𝑑𝑒𝑚𝑜 to be equal to the maximum number of
student-teacher interactions allowed (i.e. limited advice budget).
Every time the student queries the teacher a demo experience gets
generated and it gets stored into 𝐷𝑑𝑒𝑚𝑜 . When 𝐷𝑑𝑒𝑚𝑜 is full it im-
plies that the student has exhausted the advice budget and the agent
cannot ask for more demonstrations. To model the communication
constraint we fix the size of 𝐷𝑑𝑒𝑚𝑜 to be significantly smaller than
the total number of training steps.

The student agent samples batches of data to update the param-
eters of 𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝜃
. A batch 𝐵 contains experiences sampled from

both 𝐷𝜖−𝑔𝑟𝑒𝑒𝑑𝑦 and 𝐷𝑑𝑒𝑚𝑜 . A hyperparameter 𝜌 , the demo ratio,
controls the proportion of data coming from 𝐷𝑑𝑒𝑚𝑜 versus from
𝐷𝜖−𝑔𝑟𝑒𝑒𝑑𝑦 . For example, 𝜌 = 0.9 would mean that 90% of the data
in that particular batch comes from 𝐷𝑑𝑒𝑚𝑜 and the remaining 10%
comes from 𝐷𝜖−𝑔𝑟𝑒𝑒𝑑𝑦 . Figure 1 explains how a training batch is
prepared in DQN Ask Important. 𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝜃
gets updated with a mix

of demonstration and self-generated data using temporal differ-
ence(TD) loss. The demo ratio(𝜌) is a crucial hyperparameter which
must be carefully tuned to achieve good performance.

Our goal is to make efficient use of the gathered demonstration
data to accelerate student’s learning process so that the agent -
(a) has good initial performance and also (b) ends up solving the
task after as few episodes as possible. We propose the following
approach. We start with 𝜌 = 𝜌𝑠𝑡𝑎𝑟𝑡 and then we linearly decay
𝜌 as 𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝜃
receives more and more parameter updates until

𝜌 becomes equal to 𝜌𝑒𝑛𝑑 . Afterwards we keep 𝜌 = 𝜌𝑒𝑛𝑑 for the
subsequent parameter updates (see figure 2). We introduce another
hyperparameter demo fraction(f) which determines the point at
which 𝜌 becomes equal to 𝜌𝑒𝑛𝑑 for the first time. For 𝑓 = 0.5 the
corresponding point is (𝑁 × 0.5) = 𝑁

2 where 𝑁 is the total number
of parameter updates of𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝜃
network during the entire training

period. We obtained best results for the following configuration -
𝜌𝑠𝑡𝑎𝑟𝑡 = 1, 𝜌𝑒𝑛𝑑 = 0.1 and 𝑓 = 0.5.

Figure 1: Batch creation process of DQN Ask Important

Figure 2: Linear decay of demo ratio(𝜌) when 𝑓 = 0.5

The main idea is that the demo experiences are more informative
than the 𝜖-greedy experiences and hence the agent can rapidly ac-
celerate its initial performance by sampling more frequently from
𝐷𝑑𝑒𝑚𝑜 than from𝐷𝜖−𝑔𝑟𝑒𝑒𝑑𝑦 . A high value of 𝜌𝑠𝑡𝑎𝑟𝑡 ensures that the
initial training batches contain demo experiences predominantly.
However, the demonstration data necessarily covers a narrow part
of the state space and does not contain any information about
many state-action pairs which are relevant for learning a robust
policy. Hence the agent must also use its self-generated data ef-
fectively. This problem can be addressed by using a low value of
𝜌𝑒𝑛𝑑 as depicted in figure 2. A slow linear decay of 𝜌 translates to
gradual increase of 𝜖-greedy experiences in the training batches.
Once the student has exhausted its advice budget the quality of
demonstration data does not improve further. However the quality
of self-generated data keeps on improving as training progresses.
Hence, the agent heavily relies on 𝜖-greedy experiences during the
later stages of training (after 𝑁

2 point in figure 2). Algorithm 2
presents the pseudocode for DQN Ask Important algorithm.

5 EXPERIMENTS
In this sectionwe describe the environments used for the evaluation,
baselines, experimental setup and results.

Algorithm 2 DQN Ask Important

Inputs : Advice budget(𝐾), Batch size(𝐵), 𝐷𝑑𝑒𝑚𝑜 of size 𝐾 ,
𝐷𝜖-greedy of size𝑀 , 𝜌𝑠𝑡𝑎𝑟𝑡 , 𝜌𝑒𝑛𝑑 , 𝑓
Initialize student’s 𝑄-network parameters 𝜃
Initialize the target network parameters 𝜙 = 𝜃

𝑡𝑠𝑖 = 0 ⊲ state importance threshold initialized to 0
𝑙𝑖𝑠𝑡 = {} ⊲ for storing 𝐼 (𝑠) values
Get an initial observation 𝑠 ⊲ start of training
for 𝑠𝑡𝑒𝑝 = 1, . . . , 𝑀𝐴𝑋_𝑆𝑇𝐸𝑃𝑆 do

𝐼 (𝑠) = max
𝑎
𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡
𝜃

(𝑠, 𝑎) −min
𝑎
𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡
𝜃

(𝑠, 𝑎)
if 𝐼 (𝑠) ≥ 𝑡𝑠𝑖 and 𝐷𝑑𝑒𝑚𝑜 .𝑓 𝑢𝑙𝑙 == 𝐹𝑎𝑙𝑠𝑒 then

𝑎 = argmax
𝑎

𝑄𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝑠, 𝑎) ⊲ teacher demonstration

execute 𝑎 and observe 𝑠′ and 𝑟
store (𝑠, 𝑎, 𝑠′, 𝑟) in 𝐷𝑑𝑒𝑚𝑜

else
𝑎 = 𝜖-greedy w.r.t 𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝜃
⊲ autonomous execution

execute 𝑎 and observe 𝑠′ and 𝑟
store (𝑠, 𝑎, 𝑠′, 𝑟) in 𝐷𝜖-greedy

𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐼 (𝑠))
𝑡𝑠𝑖 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑙𝑖𝑠𝑡) ⊲ update threshold
𝑠 = 𝑠′

if 𝑠𝑡𝑒𝑝 > 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑎𝑟𝑡 then
if 𝑠𝑡𝑒𝑝%𝑡𝑟𝑎𝑖𝑛_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 == 0 then

calculate 𝜌 by following the method shown in 2
construct a batch of size 𝐵 as shown in 1
calculate loss using target network
perform a gradient descent step to update 𝜃
𝑙𝑖𝑠𝑡 = {} ⊲ discard previous 𝐼 (𝑠) values
𝑡𝑠𝑖 = 0 ⊲ reset the threshold to 0

if 𝑠𝑡𝑒𝑝%𝑡𝑎𝑟𝑔𝑒𝑡_𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 == 0 then
𝜙 = 𝜃 ⊲ update the target network

5.1 Environment Details
We use three different environments for our evaluation: Acrobot-v1,
MountainCar-v0 and LunarLander-v2. All of them are included in
Gymnasium [24].

Acrobot-v1 : The acrobot [20] is a two-link robotic system
with an actuator at the joint between the links. The system is
characterized by 6 variables describing the sine and cosine of the
two rotational joint angles and the joint angular velocities. The
goal is to swing the end of the lower link up to a specified height.
Actions involve applying +1, 0, or -1 torque on the actuator. The
episode lasts for 500 steps or until the goal is achieved. A reward
of -1 is given at each time step and the reward threshold is -100.

MountainCar-v0 : The Mountain Car MDP [12] features a
car randomly positioned at the bottom of a sinusoidal valley. The
objective is to strategically accelerate the car to generate sufficient
momentum for reaching the flag positioned atop the right hill. The
state is a two-dimensional vector, containing the car’s position and
velocity. The available actions are - accelerate to the left, don’t
accelerate, accelerate to the right. The agent receives a reward of
-1 for each time step. An episode ends either when the car reaches
the flag or the episode length is 200.

LunarLander-v2 : The agent controls a lunar lander that must
perform a controlled descent and land on a landing pad. The state
is represented by a 8-dimensional continuous vector containing the
lander’s position, velocity, angle, angular velocity, and two booleans
that represent whether each leg is in contact with the ground or not.
The agent has four discrete actions - do nothing, fire left orientation
engine, fire main engine, fire right orientation engine. The agent
receives positive rewards for successfully landing on the landing
pad and negative rewards for various actions that deviate from the
goal. An episode ends when the lander successfully lands or when
the lander crashes or goes out of bounds. An episode is considered
a solution if it scores at least 200 points.

5.2 Baselines
In this section we discuss the baseline and the ablation we use to
compare against our DQN Ask Important approach in the experi-
ments.

DQN(No demonstrations) : DQN [11] is a simple and common
baseline method for learning policies when we have environments
with discrete action spaces. A DQN agent typically uses 𝜖-greedy
or softmax policy to gather experiences and stores the experiences
into a replay buffer. The 𝑄-network gets updated by using batches
sampled from the buffer. Batches contain only 𝜖-greedy experiences.
This corresponds to 𝜌𝑠𝑡𝑎𝑟𝑡 = 0 and 𝜌𝑒𝑛𝑑 = 0 in figure 2.

DQN(Demonstration in the first 𝐾 steps) : In this ablation
of our method, we consider that the student queries the teacher in
all the first 𝐾 states it encounters during training, where 𝐾 is the
advice budget. Thereafter the student uses 𝜖-greedy policy to gather
data. This ablation is very similar to the early advising approach
proposed in [23]. Agent follows the method described in figure 1
to construct a training batch. Since the first 𝐾 experiences are all
demo experiences, 𝜌 = 1 for all the training batches sampled before
𝐾 training steps. Figure 3 explains how the value of 𝜌 changes as
training progresses.

Figure 3: DQN(Demonstration in the first 𝐾 steps)

5.3 Results
For a particular environment we obtained 𝑄𝑡𝑒𝑎𝑐ℎ𝑒𝑟 using vanilla
DQN algorithm. Acting greedily w.r.t𝑄𝑡𝑒𝑎𝑐ℎ𝑒𝑟 solves the task. Dur-
ing training of the student agent we utilized𝑄𝑡𝑒𝑎𝑐ℎ𝑒𝑟 to get teacher
demonstrations. The networks𝑄𝑡𝑒𝑎𝑐ℎ𝑒𝑟 ,𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝜃
and𝑄𝑡𝑎𝑟𝑔𝑒𝑡 have

the same architecture. For both DQN Ask Important and DQN(demo
first 𝐾 steps) we fixed the advice budget(𝐾) to be equal to 10% of

500 1000 1500 2000 2500 3000
Number of Training Episodes

300

250

200

150

100

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

Acrobot-v1

DQN
DQN Demo First K Steps
DQN Ask Important

(a) Acrobot-v1

4000 6000 8000 10000 12000 14000 16000
Number of Training Episodes

200

190

180

170

160

150

140

130

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

MountainCar-v0
DQN
DQN Demo First K Steps
DQN Ask Important

(b) MountainCar-v0

500 1000 1500 2000 2500 3000
Number of Training Episodes

200

100

0

100

200

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

LunarLander-v2

DQN
DQN Demo First K Steps
DQN Ask Important

(c) LunarLander-v2

Figure 4: Average episodic return plots for the three environments (averaged over five runs)

Environment Algorithm Number of
training steps(𝑇)

Advice budget(𝐾)
= 10% of𝑇

Target average
episodic return(𝑅)

Number of episodes
needed to reach 𝑅

Acrobot-v1
DQN

350k
-

-100
≈1400

DQN(demo first 𝐾 steps) 35k ≈860
DQN Ask Important 35k ≈400

MountainCar-v0
DQN

3 million
-

-140
≈15k

DQN(demo first 𝐾 steps) 300k ≈14.3k
DQN Ask Important 300k ≈11.2k

LunarLander-v2
DQN

1 million
-

200
≈3000

DQN(demo first 𝐾 steps) 100k ≈1900
DQN Ask Important 100k ≈1300

Table 1: Results for the three environments (averaged over five runs)

the total number of training steps. The size of 𝐷𝑑𝑒𝑚𝑜 is also 𝐾
for both the algorithms. We have used 𝜌𝑠𝑡𝑎𝑟𝑡 = 1, 𝜌𝑒𝑛𝑑 = 0.1 and
𝑓 = 0.5 to run our experiments. A small value of 𝜌𝑒𝑛𝑑 ensures the
use of demonstrations throughout the learning process alongside
the utilization of new experiences.

Now we explain the process we have followed to obtain the
average episodic return plots shown in figure 4. During a run of
a particular algorithm, we evaluated the resulting policies after
every training episode completion. For example, after 100 train-
ing episodes of DQN we have a policy 𝜋𝐷𝑄𝑁100 (i.e. greedy w.r.t cur-
rent 𝑄𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝜃
). Then we evaluate 𝜋𝐷𝑄𝑁100 by computing the average

episodic return of 10 evaluation episodes. Thereafter we follow
the same process to obtain the average episodic returns of 𝜋𝐷𝑄𝑁101 ,
𝜋
𝐷𝑄𝑁

102 and so on till the last training episode. Thus we obtain an
average episodic return plot for one seed. We average across five
different runs to obtain average episodic return plot for DQN for a
particular environment. We repeat the same process to obtain the
average episodic return plots of DQN Ask Important and DQN(demo
first 𝐾 steps) for the same environment. Average episodic return
plots of the three algorithms for the three environments are shown
in figure 4.

It is evident from figure 4 and table 1 thatDQNAsk Important has
the best initial performance among the three methods. Also DQN
Ask Important reaches the target average episodic return much
faster than the two other methods for all the three environments.
Better performance of DQN Ask Important and DQN(demo first K
steps) compared to vanilla DQN indicate that demo experiences

are more useful than 𝜖-greedy experiences during the early stages
of training. Effective utilization of demo experiences in the early
phase results in ‘good’ initial performance of the agent.

Both DQN Ask Important and DQN(demo first K steps) use the
gathered demonstrations efficiently by following the methods de-
scribed in 2 and 3 respectively. However DQN Ask Important has
much better performance than DQN(demo first K steps). This em-
pirically establishes the effectiveness of the data gathering policy
used by DQN Ask Important. Even though both the algorithms end
up collecting the same number of demo experiences(due to the
fixed advice budget) the demo experiences gathered by DQN Ask
Important are more informative for learning.

6 CONCLUSION
In this paper, we addressed the problem of inter-agent transfer
learning in communication-constrained settings. Our proposed
framework, Ask Important – (a) allows to model communication
scarcity by imposing a strict limit on the maximum number of
inter-agent interactions, (b) can be utilized by RL algorithms(which
work with discrete action spaces and uses a replay buffer to store
and sample experiences) such as DQN, Double DQN, Dueling DQN
etc.

We discussed in detail how Ask Important can be integrated into
an existing RL algorithm(by taking DQN as an example). We empir-
ically show that the incorporation of Ask Important – (a) ensures
much better utilization of the limited advice budget, (b) rapidly ac-
celerates initial performance and allows students to solve the tasks
in very few learning trials – for three Gymnasium environments.

REFERENCES
[1] Ofra Amir, Ece Kamar, Andrey Kolobov, and Barbara Grosz. 2016. Interactive

teaching strategies for agent training. In In Proceedings of IJCAI 2016.
[2] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A

survey of robot learning from demonstration. Robotics and autonomous systems
57, 5 (2009), 469–483.

[3] Sonia Chernova and Manuela Veloso. 2007. Confidence-based policy learning
from demonstration using gaussian mixture models. In Proceedings of the 6th
international joint conference on Autonomous agents and multiagent systems. 1–8.

[4] Jeffery Allen Clouse. 1996. On integrating apprentice learning and reinforcement
learning. University of Massachusetts Amherst.

[5] Felipe Leno Da Silva, Matthew E Taylor, and Anna Helena Reali Costa. 2018.
Autonomously Reusing Knowledge in Multiagent Reinforcement Learning.. In
IJCAI. 5487–5493.

[6] Ionel-Alexandru Hosu and Traian Rebedea. 2016. Playing atari games with
deep reinforcement learning and human checkpoint replay. arXiv preprint
arXiv:1607.05077 (2016).

[7] Kshitij Judah, Alan Paul Fern, Thomas G Dietterich, and Prasad Tadepalli. 2014.
Active lmitation learning: formal and practical reductions to IID learning. J.
Mach. Learn. Res. 15, 1 (2014), 3925–3963.

[8] Felipe Leno Da Silva, Garrett Warnell, Anna Helena Reali Costa, and Peter Stone.
2020. Agents Teaching Agents: A Survey on Inter-agent Transfer Learning. Good
Systems-Published Research (2020).

[9] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning Research
17, 1 (2016), 1334–1373.

[10] Zachary C Lipton, Jianfeng Gao, Lihong Li, Xiujun Li, Faisal Ahmed, and Li Deng.
2016. Efficient exploration for dialog policy learning with deep BBQ networks\&
replay buffer spiking. CoRR abs/1608.05081 (2016).

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[12] Andrew William Moore. 1990. Efficient memory-based learning for robot control.
Technical Report. University of Cambridge, Computer Laboratory.

[13] Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer,
Christopher Amato, Murray Campbell, and Jonathan P How. 2019. Learning to
teach in cooperative multiagent reinforcement learning. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 33. 6128–6136.

[14] Tom Le Paine, Caglar Gulcehre, Bobak Shahriari, Misha Denil, Matt Hoffman,
Hubert Soyer, Richard Tanburn, Steven Kapturowski, Neil Rabinowitz, Duncan
Williams, et al. 2019. Making efficient use of demonstrations to solve hard
exploration problems. arXiv preprint arXiv:1909.01387 (2019).

[15] Benjamin Rosman and Subramanian Ramamoorthy. 2014. Giving advice to
agents with hidden goals. In 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 1959–1964.

[16] Stefan Schaal. 1996. Learning from demonstration. Advances in neural information
processing systems 9 (1996).

[17] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[18] Peter Stone and Manuela Veloso. 1999. Task decomposition, dynamic role as-
signment, and low-bandwidth communication for real-time strategic teamwork.
Artificial Intelligence 110, 2 (1999), 241–273.

[19] Kaushik Subramanian, Charles L Isbell Jr, and Andrea L Thomaz. 2016. Explo-
ration from demonstration for interactive reinforcement learning. In Proceedings
of the 2016 international conference on autonomous agents & multiagent systems.
447–456.

[20] Richard S Sutton. 1995. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. Advances in neural information processing
systems 8 (1995).

[21] Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge.

[22] Matthew E Taylor, Halit Bener Suay, and Sonia Chernova. 2011. Integrating
reinforcement learning with human demonstrations of varying ability. In The
10th International Conference on Autonomous Agents and Multiagent Systems-
Volume 2. 617–624.

[23] Lisa Torrey and Matthew Taylor. 2013. Teaching on a budget: Agents advis-
ing agents in reinforcement learning. In Proceedings of the 2013 international
conference on Autonomous agents and multi-agent systems. 1053–1060.

[24] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de
Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus
Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai,
Andrew Tan Jin Shen, and Omar G. Younis. 2023. Gymnasium. https://doi.org/
10.5281/zenodo.8127026

[25] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal
Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.
2017. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. arXiv preprint arXiv:1707.08817 (2017).

[26] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8 (1992), 279–292.

https://doi.org/10.5281/zenodo.8127026
https://doi.org/10.5281/zenodo.8127026

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Reinforcement Learning
	3.2 Q-Learning
	3.3 Deep Q-Network (DQN)
	3.4 Teacher-Student Reinforcement Learning
	3.5 The Notion of State Importance

	4 Approach
	4.1 Data Gathering Policy
	4.2 Efficient Use of Demonstrations

	5 Experiments
	5.1 Environment Details
	5.2 Baselines
	5.3 Results

	6 Conclusion
	References

