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ABSTRACT
Addressing the question of how to achieve optimal decision-making
under risk and uncertainty is crucial to both understanding human
decision-making processes, and enhancing the capabilities of artifi-
cial agents that collaborate with or support humans. In this work,
we address this question in the context of Public Goods Games.
We study learning in a novel extended version of the Public Goods
Game where agents have different risk preferences, by means of
multi-objective reinforcement learning. We introduce a parametric
non-linear utility function to model risk preferences at the level of
individual agents. These attitudes are represented as preferences
over the rewards received from the game. We study the interplay
between such preference modeling and environmental uncertainty,
which is constructed as noise over the level of incentive alignment
in the game the agents play. We observe that different combinations
of individual preferences and environmental uncertainties sustain
the emergence of cooperative patterns in non-cooperative envi-
ronments (i.e., where competitive strategies are dominant), while
others sustain competitive patterns in cooperative environments
(i.e., where cooperative strategies are dominant).

KEYWORDS
Multi-Objective Reinforcement Learning; Public Goods Games;
Non-Linear Utility Functions

1 INTRODUCTION
How can cooperation emerge and sustain itself in situations where
agents do not necessarily have a direct motive for cooperation?
This is a fundamental question in various research areas, such as
evolutionary biology [23, 30, 37], political sciences [8, 9], cognitive
sciences [43] and physics [11]. To answer this question, researchers
developed and studied models of real-world scenarios involving
tension between the collective and personal motives, called social
dilemmas [13, 28]. The main characteristic of social dilemmas is
that players are better-off defecting at the individual level, while,
at the group level, the best outcome is mutual cooperation.

This work focuses on a specific class of social dilemmas known
as Public Goods Games (PGG), extensively studied in literature
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[2, 4, 5, 46]. A PGG describes situations where cooperation by all
agents is Pareto optimal, but because of the profitability of free-
riding [4], rational agents fail too cooperate: defection by all agents
is a Nash equilibrium [36]. We refer to this kind of games as mixed-
motives, since the incentives of the agents are partially misaligned.

In addition to incentive misalignment, other factors influencing
cooperation emergence in many real-world scenarios include un-
certainty and different individual attitudes towards risk [21, 29].
Uncertainty can have different sources: we refer to environmental
uncertainty when actors are unsure about the amount of goods they
can receive from the environment [3, 50], and to social uncertainty
when referring to ambiguity regarding the opponents’ possible ac-
tions [10, 17]. Individual preferences denote a personal inclination
toward one choice over another. In the specific context of PGGs,
we are interested in modeling individuals which, in conditions of
uncertainty, are biased towards participating in the production of
the collective good, also called risk seeking agents, and individuals
which are more inclined to not participate in it, also called risk
averse agents. We refer to these attitudes towards risk as ’prefer-
ences’ and we model them using a parametric nonlinear utility
function of the reward received by individuals from the result of
their investment in the collective good.

Since we are working with non-linear utility functions in the
PGG, we need to distinguish our perspective from the literature
on the PGGs that addresses non-linear public good productions.
Specifically, this branch focuses on settings where the resulting
public good product comes from a non-linear production process
[41]. These are called non-linear public good games, and allow
one to model certain real-world situations (populations of bacteria,
viruses, or cooperative hunting [12, 40]). In contrast, we shift our
focus to an individual level, and capture settings where potentially
different attitudes towards risk can occur within a population.

To model preferences, in our work we explicitly decouple the col-
lective versus the individual incentives experienced by the agents,
and parameterize the collective incentive at the individual level.
This choice allows us to model settings in which individuals in a
population can have different perceptions regarding these incen-
tives. Furthermore, we take a multi-objective approach on the opti-
mization of these two levels of rewards, drawing on multi-objective
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reinforcement learning (MORL) methods. This way we can investi-
gate learned behaviours that emerge from individually preferred
trade-offs between the cooperative and competitive objectives.

Contributions. We investigate learning in PGGs where agents
have different risk preferences, modeled as non-linearities over the
utility function. We study the interplay between this mechanism
and environmental uncertainty from a multi-objective perspective.
More specifically, we present the three following contributions.
First, we propose a novel multi-agent multi-objective environment
based on the Extended Public Goods Game (EPGG) [39], called the
Multi-Objective EPGG (MO-EPGG). This environment, next to fa-
cilitating training agents on games with different levels of incentive
alignment, also allows one to explicitly model the trade-off between
the individual and the cooperative components of PGGs. Moreover,
it enables decoupling environmental and social uncertainties, al-
lowing for the analysis of their impact, both when occurring con-
currently or in isolation. Second, we propose a non-linear utility
function that allows one to combine the collective and individual
rewards, parameterized at the agent level. The selected shape of
the utility function allows us to model risk averse and risk seeking
agents, by operating a convex or concave transformation over the
collective game reward. Moreover, it allows to model a population
of agents with various attitudes towards risk. Third, we perform
preliminary experiments on the dynamics of a population of inde-
pendent multi-objective reinforcement learning agents trained on
the MO-EPGG. We show that risk-averse utility functions strongly
diminish cooperation in cases with and without uncertainty. In
the presence of environmental uncertainty, risk-seeking utilities
improve cooperation in non-cooperative environments, which are
environments with defection being a dominant strategy.

2 RELATEDWORK
2.1 Non-Linear Utilities in Public Goods Games
Although the PGG with linear utility functions is the most known
and used, various models of non-linear PGGs have been proposed in
the literature as well. In the threshold public goods game for example,
the resulting public good is given by a step function of the number
of cooperators: the resource is created only if a minimum fraction
of actors participates in the production of the public good [14].
When the minimum number of participants is 1, this is called the
Volunteer’s Dilemma [6, 18]. A sigmoid public goods function closely
models many biological systems where the output production is
small for low input levels and bigger for intermediate inputs, de-
creasing again for even bigger ones [7, 12]. In other paradigms, the
public good production is modeled by applying a concave (convex)
function over the total good accumulated by the agents, whenever
the produced good is lesser (greater) than the good provided by a
linear function of the good.

Several papers focused on analyzing non-linear public good
games, by different means. In [35] authors employ non-linear PGG
with different incentive structures to analyze behavioral subtyping,
i.e. if cooperative behavior in one task can predict cooperative be-
havior in another. In [51], evolutionary dynamics techniques are
employed to study the role of different non-linear production func-
tions on the evolution of cooperation in finite populations, while
in [41], the evolutionary dynamics of two different populations

collaborating for the production of a non-linear public good is in-
vestigated. In [16] authors explore the effects of different non-linear
PGGs on the evolution of cooperation using Darwinian dynamics.

In the aforementioned literature, non-linearities in PGGs are
typically functions that influence the production of the public good.
In our work, however, we take a different perspective by introduc-
ing non-linearities at the level of the individual utilities extracted
from rewards. More specifically, our goal is to model individuals’
attitudes towards risk. The study of risk and uncertainty has been a
central focus in decision theory, which seeks to understand human
decisions processes and derive optimal decision-making strategies
[26, 31, 49]. Some studies have shown that people make decisions
based on some subjective function of the investment they made
[19, 47]. For instance, individual’s risk attitudes are often described
as functions of the investment made (𝑥 ) by means of a utility func-
tion shaped as 𝑢 (𝑥) = 𝑥𝛽 . Here, the parameter 𝛽 governs the risk
preference of the individual: if 0 < 𝛽 < 1, the function is concave,
signifying risk-aversion; if 𝛽 > 1, the function is convex, indicat-
ing a risk-seeking attitude [26]. In our work, we draw on this idea
in order to formulate a utility function that allows us to model
individual preferences for actors participating in the PGG.

2.2 Multi-Objective Reinforcement Learning
In the field of reinforcement learning, the main focus is often to
solve single-objective problems, by determining the agent’s best
policy to reach a specific goal. However, real-world challenges are
of multi-objective nature most of the time [45]. Autonomous agents,
whether human or artificial, need to optimize for multiple goals
simultaneously, or find a trade-off between them. This is the central
concept of multi-objective reinforcement learning (MORL) [25, 32,
45], a relatively recent field that demonstrated a significant progress
in the last years [44]. In MORL, the core idea is to receive vector
rewards from the environment instead of scalar rewards. Those
are usually combined by means of a scalarization function that
should serve the final objective of multiple objective optimization.
Often, a linear scalarization function is employed, which allows the
employment of single-objective RL methods. Alternatively, other
choices include monotonically increasing non-linear scalarization
functions [1, 45]. These are of particular interest for our work
since non-linear functions are often used to model utilities under
uncertainty and risk, especially in economics literature, which aims
at modeling human behavior [1, 22, 48].

Another part of this field of research focuses on fairness, i.e.,
how to optimize the trade-off among the objectives of different
individuals under particular fairness constraints [20, 24, 48]. For
example, in [48], authors employ deep RL techniques to learn a
policy that treats users equitably. We build on this framework, but
rather than focusing on the fair treatment of a set of users, we inves-
tigate the effect of uncertainty and individuals’ attitudes towards
risk. To this end, we extend their approach to work with a different
scalarisation function customized for our scenario, which allows us
to model individual preferences, and train independent reinforce-
ment learning agents in a multi-objective setting. We thus adopt
a multi-agent multi-objective reinforcement learning (MOMARL)
[42] perspective, which extends MORL to multi-agent scenarios.



3 PRELIMINARIES
In this section we present the formal definitions and the background
knowledge supporting our work. These include the Extended Pub-
lic Goods Game, multi-objective stochastic games and the multi-
objective optimization criteria.

3.1 The Extended Public Goods Game
Following [38, 39], we model the Public Goods Games as a tuple
⟨𝑁, 𝒄,𝑨, 𝑓 , 𝒓⟩. 𝑁 is the set of players, and |𝑁 | = 𝑛. Every player 𝑖
is endowed with some amount of wealth (or coins) 𝑐𝑖 ∈ R≥0, and
𝒄 = (𝑐1, . . . , 𝑐𝑛) is the tuple containing all agents’ coins. Each agent
decides whether to invest in the public good (cooperate) or keep the
endowment for themselves (defect); therefore, the set of allowed
actions for every agent 𝑖 consists of cooperate (𝐶) and defect (𝐷) i.e.,
𝐴𝑖 = {𝐶, 𝐷}. 𝑨 = 𝐴0 × ... ×𝐴𝑛 , and the tuple 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑨
represents the action profile of the agents. The multiplication factor
𝑓 ∈ (1, 𝑛) represents the quantity by which the total investment
is multiplied to produce the public good, which is then evenly
distributed among all agents. The reward function for each agent
𝑟𝑖 : 𝑨 × (1, 𝑛) × (R≥0)𝑛 → R is defined as follows:

𝑟𝑖 (𝒂, 𝑓 , 𝒄) =
1
𝑛

𝑛∑︁
𝑗=1

𝑐 𝑗 𝐼 (𝑎 𝑗 ) · 𝑓 + 𝑐𝑖 (1 − 𝐼 (𝑎𝑖 )), (1)

where 𝑎 𝑗 is the 𝑗−th entry of the action profile 𝒂 and 𝐼 (𝑎 𝑗 ) is the
indicator function, equal to 1 if the action of the agent 𝑗 is coopera-
tive, and 0 otherwise, and 𝑐 𝑗 denotes the 𝑗−the entry of 𝒄 . For the
sake of simplicity, in the following we assume all endowments to be
equal, namely 𝑐𝑖 = 𝑐 ∀ 𝑖 ∈ 𝑁 . Since 1 < 𝑓 < 𝑛, group defection is a
dominant strategy equilibrium. Yet, this profile is Pareto dominated
by the profile in which all agents cooperate.

Following [38, 39], we define the class of Extended Public Goods
Games (EPGG) by letting the value of 𝑓 range over (0, 𝑅+), where
𝑅+ > 𝑛 is an arbitrary value. When 1 < 𝑓 ≤ 𝑛, the EPGG models
mixed-motives scenarios like the classic PGG. When 0 ≤ 𝑓 < 1,
the EPGG models competitive scenarios, in which the incentives of
the participants are fully misaligned. Here the defection profile is a
Pareto optimal dominant strategy (and therefore Nash) equilibrium;
When instead 𝑛 ≤ 𝑓 ≤ 𝑅+, the EPGG models cooperative scenarios,
in which the incentives of the participants are instead fully aligned.
Here, the cooperation profile is a Pareto optimal dominant strategy
(and therefore Nash) equilibrium.

3.2 Multi-Objective Stochastic Games
We model the multi-objective multi-agent interactions using the
multi-objective stochastic game framework, defined as the tuple
𝑀 = (𝑆,A,𝑇 ,R), with 𝑛 ≥ 2 agents and 𝑑 ≥ 2 objectives, where:

• 𝑆 is the state space
• A = 𝐴1 × · · · ×𝐴𝑛 is the set of joint actions, with 𝐴𝑖 being
the action set of agent 𝑖

• 𝑇 : 𝑆 ×A ×𝑆 → [0, 1] is the probabilistic transition function
• R = R1 × · · · × R𝑛 are the reward functions, where R𝑖 : 𝑆 ×
A × 𝑆 → R𝑑 is the vectorial reward function of agent 𝑖 for
each of the 𝑑 objectives.1

1We note that in this article the terms reward and payoff are synonyms. For the
sake of clarity and consistency, we stick to the former term which aligns with the
reinforcement learning terminology.

We take a utility-based perspective [45] for multi-objective deci-
sion making, assuming that each agent 𝑖 has a utility function
𝑢𝑖 : R𝑑 → R that maps the received reward vector to a scalar value,
determining the desired trade-off between the objectives.

3.3 Optimization Criteria
In MORL, the goal of each agent is to find a policy 𝜋 that maxi-
mizes the scalarized return 𝑉 𝜋

𝑢 under their preferred optimisation
criteria. Depending on how agents derive their utility, two optimiza-
tion criteria can be employed in the scalarisation process, when
maximising the expected discounted long-term reward vector:

• The Scalarised Expected Return (SER) criterion:

𝑽𝜋
𝑢 = 𝑢

(
E𝜋

[ ∞∑︁
𝑡=0

𝛾𝑡 𝒓𝑡 | 𝜇0
] )
, (2)

where 𝜇0 is the distribution over initial states, 𝛾 is the dis-
count factor, and 𝜋 is the agent’s policy. 𝒓𝑡 = R(𝑠𝑡 , a𝑡 , 𝑠𝑡+1)
is the vectorial reward obtained by an agent at timestep 𝑡 .

• The Expected Scalarised Return (ESR) criterion:

𝑽𝜋
𝑢 = E𝜋

[
𝑢

( ∞∑︁
𝑡=0

𝛾𝑡 𝒓𝑡

)
| 𝜇0

]
(3)

Which criteria to choose depends on the problem at hand [42].
If we care about the goodness of a single policy execution, ESR
is the correct criterion. If instead we are interested in the quality
of average policy executions, we should use SER. While under
linear utility function the optimization criteria are equivalent, under
non-linear utility functions they may output different solutions.
In this work, we opt for the SER criterion, modelling agents that
are interested in optimising their behaviour in repeated interaction
settings.

4 MULTI-OBJECTIVE EPGG
We formulate a multi-objective version of the EPGG, called Multi-
Objective Extended Public Goods Game (MO-EPGG), by employing
the framework of Multi-Objective Stochastic Games, outlined in
Section 3.2. In our framework, the state space consists of the value
of the multiplication factor 𝑓 of the game currently being played,
and the action space coincides with that of the single-objective
EPGG, outlined in Section 3.1. The transition function is simply a
random sampling from the set of possible multiplication factors at
the beginning of each episode, and deterministically returns that
same value of 𝑓 at all the subsequent steps of the episode.

To complete our multi-objective formulation of the EPGG, we
need to vectorize the scalar reward signal obtained by agents in
the EPGG. This process is called multi-objectivization of single-
objective problems [27, 33]. By observing the form of the reward
function in Equation 1, we can easily distinguish between the part
that defines the collective (𝑟𝐶 ) and the individual payoff (𝑟 𝐼 ):

𝑟𝐶𝑖 (𝒂, 𝑓 , 𝒄) = 1
𝑛

𝑛∑︁
𝑗=1

𝑐 𝑗 𝐼 (𝑎 𝑗 ) · 𝑓 (4)

𝑟 𝐼𝑖 (𝒂, 𝒄) = 𝑐𝑖 (1 − 𝐼 (𝑎𝑖 )). (5)



Then, in the proposed MO-EPGG, the vectorial reward received
by agent 𝑖 , given action profile 𝒂, current multiplication factor 𝑓 ,
and tuple of endowments 𝒄 , is:

𝒓𝑖 (𝒂, 𝑓 , 𝒄) =
(
𝑟𝐶𝑖 (𝒂, 𝑓 , 𝒄), 𝑟 𝐼𝑖 (𝒂, 𝒄)

)
. (6)

This completes our description of the MO-EPGG as a MOSG. In
Figure 1 we display an example for the vectorial rewards received
by 𝑁 = 2 agents playing the MO-EPGG for three different values
of the multiplication factor 𝑓 .

In order to perform multi-objective optimization, we need to
define a utility function to optimize the agents’ policies. To do this,
we follow the approach outlined in [35], by applying a non-linear
transformation over the collective component of the reward vector.
However, we adjust their approach to our setting, using the non-
linear function to model agent’s preferences over the collective
outcome as risk seeking or risk avoiding behaviors. In particular, in
our model the benefit obtained from the collective reward behaves
non-linearly by means of an exponential function. Therefore, we
define the following non-linear utility function that specifies the
final scalarised utility for the MO-EPGG, for each agent 𝑖:

𝑢𝑖 (𝓻𝑖 ) = 𝑤𝐶
𝑖

(
𝓇
𝐶
𝑖

)𝛽𝑖 +𝑤 𝐼
𝑖 𝓇

𝐼
𝑖 , (7)

with hyperparameters 𝑤𝐶
𝑖
, 𝑤 𝐼

𝑖
, and 𝛽𝑖 . Here, 𝓇𝐶 and 𝓇

𝐼 are the
expected discounted sums of rewards: 𝓇𝑘 =

∑
𝑡 𝛾

𝑡𝑟𝑘𝑡 , for 𝑘 ∈ {𝐶, 𝐼 }.
We note that we are employing expected returns rather than re-
wards, since we are working under the SER criterion.𝑤𝐶

𝑖
and𝑤 𝐼

𝑖
are weights applied to the cooperative and competitive components
of the vectorial expected return 𝓻𝑖 , for each agent 𝑖 , and take values
in R≥0. They can also be interpreted as individual preferences. In
this equation, the parameter 𝛽𝑖 governs the risk seeking/averse be-
havior of agent 𝑖 towards the collective expected return 𝓇

𝐶
𝑖
: 𝛽 = 1

returns a linear utility function, 𝛽 < 1 generates a concave function,
modeling a risk avoiding agent, while 𝛽 > 1 generates a convex
function, modeling a risk seeking agent [35].

In Equation 7, the exponent is only applied over the collective re-
ward component. This choice is motivated by our conceptualization
of the collective reward as the result of a (possibly) risky invest-
ment. And the result depends on 1) the value of the multiplication
factor 𝑓 , which might not be known with certainty by the agents,
and 2) the actions of the other players. Moreover, one can observe
that the preference between the cooperative or defective behavior
depends on the relationship between three values, namely, 𝑓 , 𝑐 and
𝛽 . In particular, assuming an equal value of 𝛽 among the whole
population of agents (𝛽𝑖 = {𝛽}𝑖∈𝑁 ), the collective cooperative ac-
tion (𝒂𝐶 = {𝐶}𝑖∈𝑁 ) is preferred over the collective defective action
(𝒂𝐷 = {𝐷}𝑖∈𝑁 ) by all the agents when 𝑟𝐶 (𝒂𝐶 , 𝑓 , 𝒄) > 𝑟 𝐼

𝑖
(𝒂𝐷 , 𝒄),

which is the case when (𝑐 𝑓 )𝛽 > 𝑐 . This relationship between the
variables induces a shared preference over collective cooperative
behavior in otherwise defective scenarios (the case when 𝑓 < 1). In
general, collective cooperation is preferred over collective defection
whenever either of the following conditions holds:

𝛽 <
log(𝑐)
log(𝑐 𝑓 ) if 0 < 𝑐 𝑓 < 1 (8)

𝛽 >
log(𝑐)
log(𝑐 𝑓 ) if 𝑐 𝑓 > 1. (9)

𝑓 = 0.5 Player 1
𝐶 𝐷

Player 0 𝐶 [2, 0], [2, 0] [1, 0], [1, 4]
𝐷 [1, 4], [1, 0] [0, 4], [0, 4]

𝑓 = 1.5 Player 1
𝐶 𝐷

Player 0 𝐶 [6, 0], [6, 0] [3, 0], [3, 4]
𝐷 [3, 4], [3, 0] [0, 4], [0, 4]

𝑓 = 2.5 Player 1
𝐶 𝐷

Player 0 𝐶 [10, 0], [10, 0] [5, 0], [5, 4]
𝐷 [5, 4], [5, 0] [0, 4], [0, 4]

Figure 1: Multi-objective payoff matrices received by 2 play-
ers with 4 coins each, playing the MO-EPGG with multiplica-
tion factors of 0.5, 1.5 and 2.5, when taking the cooperative
(𝐶) or defective (𝐷) actions.

In the same way, collective defection is preferred over collective
cooperation whenever (𝑐 𝑓 )𝛽 < 𝑐 . 2 We remark that this result does
not mean that 𝒂𝐶 is a Nash equilibrium of the game, since other
mixed-strategy equilibria could be present.

5 EXPERIMENTAL SETUP
5.1 Algorithms
In this work we train independent RL agents by utilising the multi-
objective version of the Deep Q-network (DQN) algorithm [34]
described in [48], that allows us to optimize policies under the
SER criterion. In their work, the DQN is trained to predict a Q-
function for every objective. Therefore, the output of the DQN has
dimensionality |𝐴| ×𝑑 where 𝑑 represents the number of objectives.
To adapt their DQN modification to our setting, we adjust their
algorithm to work with our scalarization function (Equation 7). The
loss function for the DQN can be expressed as follows:

𝐿(𝜃 ) = E𝑠,𝑎,𝑠′,𝑟∼𝐷
[ (

𝒓 + 𝛾 �̂�𝜃 ′ (𝑠′, 𝑎∗) − �̂�𝜃 (𝑠, 𝑎)
)2 ]

, (10)

where 𝜃 and 𝜃 ′ represent the weights of the DQN at two different
timesteps of the training. 𝐷 represents the buffer of stored tran-
sitions, and 𝒓 is the vector reward. We find the best action 𝑎∗ by
applying the SER optimization criterion:

𝑎∗ = argmax𝑎∈𝐴𝑢
(
E[𝒓 + 𝛾 �̂�𝜃 ′ (𝑠′, 𝑎′)]

)
, (11)

2Setting the value 𝑐 = 4 for every agent, cooperation becomes rational in defective
environments whenever 𝛽 < log(4)/log(4𝑓 ) if 𝑓 < 0.25, and whenever 𝛽 >

log(4)/log(4𝑓 ) if 𝑓 > 0.25.



namely, by applying our custom scalarization function 𝑢 to update
of the DQN function described in [48]3.

5.2 Experiments
The preliminary experiments are run over a pool of 𝑁 = 20 agents.
At each iteration 𝑡 of the learning, a multiplication factor 𝑓𝑡 is uni-
formly sampled from the interval [𝑓min, 𝑓max], chosen such as to
include cooperative, competitive, and mixed-motive games. After-
wards, 𝑀 agents, sampled from the pool, participate in the game
for 10 rounds. We fixed𝑀 = 4 and picked 𝑓min = 0.5 and 𝑓max = 6.5.
This choice enables the sampling from a set that contains compet-
itive (𝑓 < 1), mixed motive (1 < 𝑓 < 𝑀), and cooperative games
(𝑓 > 𝑀). Each agent receives as observation the current value of
the multiplication factor — which can be observed with uncertainty
— together with the previous actions taken by all opponents at the
previous time step: 𝒐𝑖𝑡 = (𝑓 𝑖

𝑜𝑏𝑠
, 𝒂−𝑖

𝑡−1), where 𝒂
−𝑖 = (𝑎 𝑗 ) 𝑗∈𝑀 : 𝑗 ≠ 𝑖 .

Therefore, each agent will learn a policy 𝜋𝑖
𝐴
: 𝑂𝑖 ×𝐴 → [0, 1] which

is optimized under the selected utility function, using the SER opti-
mization criteria (see Section 3.3). We model uncertainty over the
observation of the multiplication factor as Gaussian noise over the
value of 𝑓 received from the environment: 𝑓 𝑖

𝑜𝑏𝑠
= 𝑓 + N(0, 𝜎2

𝑖
),

where 𝜎𝑖 is the uncertainty experienced by agent 𝑖 . To maintain
consistency with the allowed values in the EPGG, negative sampled
values are rounded up to 0.

All the experiments are run for 20000 epochs, and results are
averaged over 20 runs for every condition. The learning rate is set
to 𝜆 = 0.001, and 𝛾 = 0.99. The DQN has one hidden layer with size
4, and the action selection mechanism is 𝜖-greedy, with 𝜖 = 0.01.
The values of the weights are fixed as 𝑤𝐶 = 𝑤 𝐼 = 1 for all the
agents. The plots show the values of the average cooperation of the
active agents at every evaluation step of the learning process.

6 RESULTS
6.1 Learning with homogeneous preferences
We first explore the impact of different values of 𝛽 on the scenarios
with and without uncertainty on the observations. We performed
experiments for three values of 𝛽 , that define a linear (𝛽 = 1), a
convex (𝛽 = 2) and a concave (𝛽 = 0.5) utility function. In each of
these three experiments, the 𝛽 values are identical for every agent.
The results for these experiments are depicted in Figure 2. The
experimentswith 𝛽 = 0.5 symbolize a system of risk avoiding agents
playing the MO-EPGG, that strongly push the system behavior
toward competition across all games. The result stays consistent
across the scenarios with and without uncertainty. In Section 4 we
observed that collective cooperation is preferred over collective
defection every time that (𝑐 𝑓 )𝛽 > 𝑐 . However, here, with 𝛽 = 0.5,
collective cooperation should be preferred over collective defection
every time 𝑓 > 4, but this was not observed in the experiments.
This can be due to the presence of other mixed-motive equilibria,
or the effect of the concurrent learning among the set of games. We
plan to investigate these possibilities as part of our future work.

The experiments with 𝛽 = 1 represent the baseline in which the
agents are playing the linear version of the EPGG. Therefore, in the
3As pointed out also in [48], the scalarization of the expectation is hard to compute,
therefore we actually compute the expectation of the scalarization, which is its lower
bound.

games without uncertainty, we observe as expected convergence to
cooperation whenever 𝑓 > 𝑀 , convergence to defection whenever
𝑓 < 1, and a very slight percentage of cooperation when 1 < 𝑓 < 𝑀 .
When uncertainty is introduced, cooperation is increased in all the
competitive and mixed-motive scenarios. This results from the
concurrent learning from a set of games with different levels of
incentive alignment, as previously observed in [39].

The experiments with 𝛽 = 2 symbolize a system of risk seeking
agents playing in the MO-EPGG. Here, we observe that the coop-
eration of the system is drastically increased in all games. Again,
we note that for 𝛽 = 2 and 𝑓 = 0.5 we expect mutual cooperation
to be preferred over mutual defection. However, this was not the
case, and the most likely explanation is the presence of additional
mixed-strategy equilibria. Interestingly, in the scenarios with uncer-
tainty, cooperation emerges as the only learned equilibrium even
in competitive games, overcoming such effect.

6.2 Learning with heterogeneous preferences
Secondly, we investigate the impact of learning in the MO-EPGG
when the agents’ preferences 𝛽𝑖 are heterogeneous. Specifically, we
observe the case in which the value of 𝛽𝑖 for every agent 𝑖 is sampled
form a normal distribution centered in 1: 𝛽𝑖 ∼ N(𝜇𝛽 , 𝜎2𝛽 ) ∀ 𝑖 ∈ 𝑁 ,
with 𝜇𝛽 = 1 and 𝜎𝛽 = 0.5. The resulting system represents an
heterogeneous population where not every individual has the same
risk preference, and is centered on risk-neutrality (𝛽 = 1). Figure 3
reports the results of the experiments for the scenarios without (top
row) and with (bottom row) uncertainty on the observations. We
can observe that the effect of heterogeneity, when uncertainty is not
introduced, is to drastically reduce cooperation in the cooperative
scenarios (𝑓 > 𝑀), while keeping competition as an equilibrium
in the competitive and mixed-motive games. When uncertainty is
introduced, cooperation is increased in the competitive and mixed
games with respect to the cases without uncertainty. This result is
consistent with previous findings over the presence of uncertainty
in non-cooperative environments [38, 39]. Interestingly, only the
non-cooperative games are affected by the presence of uncertainty:
in the cooperative games, the average cooperation of the system is
equal to the one observed in the scenario without uncertainty. We
plan to delve in the reason for this outcome in our future work.

7 CONCLUSIONS AND FUTUREWORK
In this work, we investigate the role of misalignment of incentives,
uncertainty and individual preferences on agents’ cooperation in
the scenario of a novel multi-objective extended public goods game,
employing the tool of multi-objective reinforcement learning. In
particular, we observed how risk averse attitudes can increase de-
fection in cooperative environments, and, inversely, risk seeking
ones can grow cooperation in competitive and mixed games, espe-
cially when uncertainty is introduced. Moreover, we observed how
a population with heterogeneous risk attitudes, centered in risk
neutrality, tends to not reach cooperation in cooperative games.
When also uncertainty is introduced, the observed behavior is to
act cooperatively 50% probability.

As future work, we aim to analyze the proposed scenario in
two orthogonal directions. First we plan to investigate the effect
of a population with heterogeneous preferences (𝑤𝐶

𝑖
,𝑤 𝐼

𝑖
and 𝛽) on



(a) 𝑓 = 0.5 (b) 𝑓 = 1.5 (c) 𝑓 = 3.5 (d) 𝑓 = 5.5

(e) 𝑓 = 0.5 (f) 𝑓 = 1.5 (g) 𝑓 = 3.5 (h) 𝑓 = 5.5

Figure 2: Average cooperation values for the active DQN agents trained across environments with different multiplication
factors, without uncertainty (top row) and with uncertainty on the observations of the multiplication factor 𝜎𝑖 = 2 ∀ 𝑖 ∈ 𝑁

(bottom row). Both experiments have been run with three different values of 𝛽 , identical for every agent 𝛽𝑖 = 𝛽 ∀ 𝑖 ∈ 𝑁 . Shaded
regions represent standard deviations.

(a) 𝑓 = 0.5 (b) 𝑓 = 1.5 (c) 𝑓 = 3.5 (d) 𝑓 = 5.5

(e) 𝑓 = 0.5 (f) 𝑓 = 1.5 (g) 𝑓 = 3.5 (h) 𝑓 = 5.5

Figure 3: Average cooperation values for the active DQN agents trained across environments with differentmultiplication factors,
without uncertainty (top row) and with uncertainty on the observations of the multiplication factor 𝜎𝑖 = 2 ∀ 𝑖 ∈ 𝑁 (bottom row).
Both experiments have been ran with values of 𝛽 randomly sampled from a normal distribution 𝛽𝑖 ∼ N(𝜇𝛽 , 𝜎2𝛽 ) ∀ 𝑖 ∈ 𝑁 , with
𝜇𝛽 = 1 and 𝜎𝛽 = 0.5. Shaded regions represent standard deviations.

the learning dynamics and cooperation levels in the MO-EPGG.
Second, we will investigate the role of uncertainty over the obser-
vation of the multiplication factor, extending the work conducted
by Orzan et al. [38]. We thus plan to explore the interplay between
heterogeneous preferences and uncertainty. We also intend to ex-
plore the outcomes of learning with non-linear utility functions

for the PGG when reputation mechanisms and social norms are
present. Moreover, we plan to take into account other non-linear
risk averse/seeking functions, and compare results with different
state-of-the-art independent RL algorithms, such as independent
proximal policy optimization (IPPO) [15].
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