
Multi-Agent Synchronization Tasks
Rolando Fernandez

DEVCOM Army Research Laboratory
The University of Texas at Austin

Austin, TX, United States
rfernandez@utexas.edu

Garrett Warnell
DEVCOM Army Research Laboratory
The University of Texas at Austin

Austin, TX, United States
garrett.a.warnell.civ@army.mil

Derrik E. Asher
DEVCOM Army Research Laboratory

Adelphi, MD, United States
derrik.e.asher.civ@army.mil

Peter Stone
The University of Texas at Austin

Sony AI
Austin, TX, United States
pstone@cs.utexas.edu

ABSTRACT
In multi-agent reinforcement learning (MARL), coordination plays
a crucial role in enhancing agents’ performance beyond what they
could achieve through cooperation alone. The interdependence of
agents’ actions, coupled with the need for communication, leads to
a domain where effective coordination is crucial. In this paper, we
introduce and define Multi-Agent Synchronization Tasks (MSTs), a
novel subset of multi-agent tasks. We describe one MST, that we
call Synchronized Predator-Prey, offering a detailed description that
will serve as the basis for evaluating a selection of recent state-of-
the-art (SOTA) MARL algorithms explicitly designed to address
coordination challenges through the use of communication strate-
gies. Furthermore, we present empirical evidence that reveals the
limitations of the algorithms assessed to solve MSTs, demonstrating
their inability to scale effectively beyond 2-agent coordination tasks
in scenarios where communication is a requisite component. Finally,
the results raise questions about the applicability of recent SOTA
approaches for complex coordination tasks (i.e. MSTs) and prompt
further exploration into the underlying causes of their limitations
in this context.

KEYWORDS
Coordination, Multi-Agent Reinforcement Learning, Graph Neu-
ral Networks, Coordination Graphs, Multi-Agent Synchronization
Tasks, Predator-Prey

1 INTRODUCTION
Coordination is essential in fully cooperative environments where
agents on a team must work together to achieve a common goal. In
this work, we define Coordination as the ability of agents to align
their actions with their partners and Cooperation as the ability of
agents to work together to achieve a shared objective (e.g., by shar-
ing information about their actions to gain mutual benefit) [1, 4].
Together Coordination and Cooperation allow agents to communi-
cate and collaborate to make joint decisions and take collective
actions that lead to the best outcomes for the team.

In multi-agent reinforcement learning (MARL), coordination
plays a crucial role in enhancing agents’ performance beyond what
they could achieve through cooperation alone. This performance

Proc. of the Adaptive and Learning Agents Workshop (ALA 2024), Avalos, Müller, Wang,
Yates (eds.), May 6-7, 2024, Online, https://ala2024.github.io/ . 2024.

improvement is achieved by enabling agents to share information
and align their actions. Coordination is essential in MARL because
it enables teams to work together more effectively than without
coordination, especially when the agents’ objectives are interde-
pendent or when their actions can impact each other. For example,
in a soccer game, players must coordinate their actions to score
and defend their goals.

Typically, MARL approaches leverage cooperative domains tai-
lored to facilitate the study of agent interactions and coordina-
tion strategies. These cooperative environments share common
attributes essential for testing and refining multi-agent systems.
Cooperative domains are characterized by agents working toward
shared goals, where the success of each agent is intertwined with
the overall team objective. The interdependence of agents’ actions,
coupled with the need for communication, leads to a domain where
effective coordination is crucial. Tasks within these domains are
deliberately complex, often featuring dynamic elements and uncer-
tainties that demand adaptive coordination strategies. Some exam-
ples of these types of domains are predator-prey, stag hunt, and
StarCraft, among others [2, 8–10, 14]. Additionally, one-shot game
domains have been employed to analyze various MARL methods,
contributing to a comprehensive understanding of the capabilities
and limitations of the methods [3, 8]. These environments provide
diverse challenges for evaluating the robustness and adaptability
of MARL approaches.

In this paper, the focus is directed towards Multi-agent Synchro-
nization Tasks (MSTs), which are a novel subset of cooperative
multi-agent domains. MSTs necessitate communication strategies
and precise timing for agents to align their actions and accom-
plish a given task. The emphasis on communication underscores
the importance of deliberate information exchange among agents,
highlighting the need for a well-defined communication framework
to achieve coordination. The requirement for precise timing further
accentuates the intricacies of these domains, where the synchro-
nization of agents’ actions becomes a critical factor in the successful
execution of tasks. By honing in on MSTs, the paper aims to con-
tribute insights into the challenges and strategies associated with
explicit communication and precise timing in multi-agent systems,
thereby advancing our understanding of cooperative behaviors in
complex environments.

We will describe one such domain, that we call Synchronized
Predator-Prey, offering a detailed description that will serve as the

https://ala2024.github.io/


basis for evaluating a selection of recent MARL algorithms explic-
itly designed to address coordination challenges through the use
of communication strategies. Our analysis will shed light on how
the existence of penalties for mis-timed (unsychrnonized) actions,
manifested as negative rewards, influences the need for communica-
tion between agents (i.e. to avoid relative overgeneralization [13]).
Furthermore, we will present empirical evidence that reveals the
limitations of the assessed MARL algorithms, demonstrating their
inability to scale effectively beyond two-agent coordination tasks
in scenarios where communication is a requisite component. This
investigation aims to provide an understanding of the interplay
between communication, penalties, and scalability within coop-
erative multi-agent systems, offering valuable insights into the
performance and limitations of contemporary MARL approaches
in such contexts.

2 RELATEDWORK
We now discuss the relationship between Multi-agent Synchro-
nization Tasks (MSTs) and the MARL literature. We will discuss
multi-agent synchronization tasks in the context of several well-
knownMARL domains. Additionally, wewill discuss several current
state-of-the-art (SOTA) MARL algorithms that we will evaluate on
synchronization tasks.

2.1 Domains
In this work, we are concerned with a particular type of multi-agent
problem that requires agents to align their actions to succeed in a
given task. Such tasks have been explored in theMARL literature via
established domains such as Stag Hunt and Predator-Prey Pursuit
games [11, 15]. More recent approaches have also employed the
StarCraft Multi-Agent Challenge (SMAC) domain and one-shot (i.e.,
non-sequential) domains [3, 8]. However, none of these domains
highlights the need for precise synchronization among agents (see
Section 3), and so we will introduce here a new domain that we
refer to as Synchronized Predator-Prey.

2.2 Algorithms
We now briefly describe existing algorithmic approaches designed
to engender coordination among agents in MARL. For more de-
tailed information, refer to the methods/algorithms sections of the
cited works. We focus on the use of communication methods to
solve multi-agent synchronization tasks; specifically on the com-
munication method called Coordination Graphs (CG), a graph rep-
resentation of the communication structure between agents in a
multi-agent system. While CGs were first combined with RL in the
work of Guestrin et al. [5], there have been several recent advances
in this space.
DCG. Building on the work of Guestrin, Bohmer et al. [2] proposed
Deep Coordination Graphs (DCG), a MARL algorithm based on
Deep Q Networks (DQN) that utilized CGs to coordinate greedy
action selection between connected agents in a graph. Instead of the
Variable Elimination scheme, they use the Max-Plus anytime mes-
saging scheme [7], which trades the exact optimal joint action for an
approximation that allows real-time action selection. Though this
approach overcomes the real-time limitations of previous works,

it still maintains the use of pre-defined coordination graphs with
fixed topologies.
DICG. To overcome the limitations of using pre-defined fixed coor-
dination graphs, Li et al. [9] proposed Deep Implicit Coordination
Graphs (DICG). This method is a policy-based algorithm that allows
implicit coordination graphs to be constructed implicitly at each
timestep given the state of the environment. This new algorithm
introduced two main changes to the previous work: (1) a Graph
Neural Network (GNN) [6] is used to handle message passing be-
tween agents, and (2) an attention network is introduced, which
implicitly creates the coordination graph at each timestep.
QGNN. Similar to the DICG application of GNNs, Kortvelesy et
al. [8] proposed a DQN-based value function factorization method
called QGNN that uses a model and mixer framework akin to QMIX
[14], but with a GNN [6] embedded in the model network. To
summarize, QGNN introduces three main changes to the previous
work: (1) it utilizes a model and mixer framework like QMIX, (2)
a GNN [6] is embedded in the model network, and (3) the QGNN
mixer is introduced to compute the monotonic joint-action value
using a custom pooling operation.

3 MULTI-AGENT SYNCHRONIZATION TASKS
In this paper, we are concerned with a particular subset of multi-
agent tasks that we call multi-agent synchronization tasks (MSTs).
In this section, we provide a precise technical definition of MSTs,
and also discuss a sample domain that we have designed that serves
as an exemplar.

3.1 Background
We define MSTs as a subset of decentralized partially observable
Markov decision processes (Dec-POMDPs) [12]. Formally, for 𝑛
agents, a Dec-POMDP is characterized by a tuple:

M𝐷𝑒𝑐𝑃 = ⟨D, S,A,𝑇 ,O, 𝜎, 𝑅,𝛾⟩.

Here, D = 1, . . . , 𝑛 is the set of 𝑛 agents and S denotes a set of
states. A is the set of joint actions A = A1 × . . . × A𝑛 , where A𝑖 is
the set of actions available to agent 𝑖 ∈ D, which can be different
for each agent. At each timestep 𝑡 , the system is in state 𝑠𝑡 ∈ S,
and each agent 𝑖 takes an action 𝑎𝑖𝑡 , leading to one joint action
𝑎𝑡 = (𝑎1𝑡 , . . . , 𝑎𝑛𝑡 ) at each timestep. The resulting next state, 𝑠𝑡+1, is
drawn from the transition function 𝑇 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ). The transition
yields a shared reward 𝑅𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 ) with 𝛾 ∈ [0, 1) denoting
the discount factor. Similar to A, O = O1 × . . . × O𝑛 is the set of
joint observations, where O𝑖 is the set of observations available
to agent 𝑖 ∈ D. Each agent 𝑖 observes the state only through a
(partial) observation 𝑜𝑖𝑡 ∈ O𝑖 drawn from its observation function
𝜎𝑖 (𝑜 | 𝑎𝑡 , 𝑠𝑡+1).

A solution to a Dec-POMDP is typically an optimal policy or a
set of optimal policies that specify the actions each agent should
execute, considering their individual histories of observations and
actions, as informed by the optimal state-action value function (𝑄∗),
where

𝑄∗ (𝑏, 𝑎) =
∑︁
𝑠∈S

𝑏 (𝑠)
[
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑜∈O

𝜎 (𝑜 |𝑠, 𝑎)max
𝑎′

𝑄∗ (𝑏′, 𝑎′)
]
.



Because the state of the environment is not fully observable to
the agents, these policies must be based on beliefs or estimates of
the state (𝑏), derived from the history of observations and actions.
The overarching aim of these policies is to maximize the collective
reward over time, optimizing the expected benefit for all agents
involved across a potentially infinite or finite horizon. By striving to
maximize this collective reward, the solution inherently seeks the
most advantageous outcome for the group as a whole, navigating
the complexities of partial observability and decentralized decision-
making in Dec-POMDP environments.

3.2 MST Definition
Broadly speaking, MSTs are tasks that exhibit high stakes when
it comes to agents synchronizing their actions. We characterize
them using per-agent notions of neutral actions (A𝑖, 𝑛𝑒𝑢𝑡 ) and syn-
chronization actions (A𝑖, 𝑠𝑦𝑛𝑐 ). Neutral actions are standard actions
that an agent can take without having to coordinate with others,
whereas synchronization actions require precise timing and coordi-
nation with other agents to be successful. Intuitively, synchroniza-
tion actions are special actions that, in at least one circumstance, are
optimal, but also carry the risk that, if attempted by some members
of the team but not executed by others at the same time, the result
is worse than if all members of the team had restricted themselves
to neutral actions only.

The formal structure of these tasks involves dividing each agent’s
possible actions into synchronization and neutral actions, with the
total action space for an agent being the union of these two types.
This division allows us to categorize joint actions (actions taken by
all agents together) into three subsets based on their outcomes in a
given state, neutral joint actions (A𝑛𝑒𝑢𝑡 ), synchronization-positive
joint actions (A+ (𝑠)), and synchronization-negative joint actions
(A− (𝑠)). A𝑛𝑒𝑢𝑡 consists of joint actions in which every agent opts
for a neutral action. These actions are safe, but may not always lead
to the best possible outcomes. A+ (𝑠) is the set of actions that, when
executed by the agents, result in a successful synchronization, offer-
ing a better reward than any set of neutral actions in the same state.
(A− (𝑠)) is the set of actions where attempts at synchronization fail,
leading to outcomes worse than if all agents had chosen neutral
actions. For a task to satisfy the definition of an MST, there must
exist at least one state such that the sets A+ (𝑠) and A− (𝑠) are not
empty.

Moving a large/heavy piece of furniture is an example of an MST
where two or more people must coordinate their actions to achieve
task success (e.g., avoid hurting themselves and/or damaging the
furniture). In this case, the A𝑖, 𝑛𝑒𝑢𝑡 actions consist of not lifting
the piece of furniture and the A𝑖, 𝑠𝑦𝑛𝑐 actions consist of lifting
the piece of furniture. The joint actions in A+ are those such that
the two people lift up the piece of furniture simultaneously. Then,
the joint actions in A− are those such that one person lifts, while
the other does not, or such that they both lift, but one person is
not next to the furniture, as the lifter could get hurt, and/or the
furniture could be damaged. While A𝑛𝑒𝑢𝑡 , are those actions such
that no person attempts to lift the piece of furniture, as no one can
be injured and the furniture cannot be damaged. From the example,
it is clear that actions resulting in successful synchronization are

a better choice over neutral actions, while actions that result in
unsuccessful synchronization are clearly worse.

More formally, let (A1, 𝑠𝑦𝑛𝑐 , . . . ,A𝑛, 𝑠𝑦𝑛𝑐 ) define a partitioning
of each agent’s action space into A𝑖 = A𝑖, 𝑠𝑦𝑛𝑐 ∪ A𝑖, 𝑛𝑒𝑢𝑡 where
A𝑖, 𝑛𝑒𝑢𝑡 = A𝑖, 𝑠𝑦𝑛𝑐 . Further, let that partitioning define the follow-
ing three subsets of the joint action space:

𝑄∗ = A1, 𝑛𝑒𝑢𝑡 × · · · × A𝑛, 𝑛𝑒𝑢𝑡 ,

A+ (𝑠) =
{
𝑎

����� ∃ 𝑖, 𝑗 𝑠 .𝑡 .
𝑎𝑖 ∈ A𝑖, 𝑠𝑦𝑛𝑐
𝑎 𝑗 ∈ A𝑗, 𝑠𝑦𝑛𝑐

∀ 𝑎𝑛𝑒𝑢𝑡 ∈ A𝑛𝑒𝑢𝑡 𝑄∗ (𝑠, 𝑎) > 𝑄∗ (𝑠, 𝑎𝑛𝑒𝑢𝑡 )

}
,

and

A− (𝑠) =
{
𝑎

����� ∃ 𝑖 𝑠 .𝑡 . 𝑎𝑖 ∈ A𝑖, 𝑠𝑦𝑛𝑐
∀ 𝑎𝑛𝑒𝑢𝑡 ∈ A𝑛𝑒𝑢𝑡 𝑄∗ (𝑠, 𝑎𝑛𝑒𝑢𝑡 ) > 𝑄∗ (𝑠, 𝑎)

}
.

Note that the definition of A+ (𝑠) depends on at least two agents
synchronizing, but does not exclude joint actions where more than
two agents synchronize.

Definition 1. Multi-agent Synchronization Task. A multi-
agent synchronization task (MST) is a Dec-POMDP where there exists
a partitioning (A1, 𝑠𝑦𝑛𝑐 , . . . ,A𝑛, 𝑠𝑦𝑛𝑐 ) and at least one 𝑠 ∈ S such
that A+ (𝑠) ≠ ∅ and A− (𝑠) ≠ ∅.

The presence of elements in the set A+ (𝑠) indicates that, when
the system is in state 𝑠 , there is at least one sub-team of agents
for which the execution of synchronization actions (A𝑖, 𝑠𝑦𝑛𝑐 ) is the
optimal action. Conversely, non-emptyA− (𝑠) indicates that, for the
same state, there are scenarios where at least one agent attempting
a synchronization action results in a catastrophic failure in the
sense that, if all agents had stuck to neutral actions, the outcome
would have been better. Both sets being non-empty for the same
𝑠 creates the condition for a high-stakes scenario: it is possible
for agents to either achieve the highest level of success through
the correct application of synchronization actions, but it is also
possible that trying to execute a synchronization action can lead to
a worse outcome than trying no synchronization actions at all. This
duality underlines the critical importance of precise coordination
and timing among agents in MSTs.

3.3 Example MST: Synchronized Predator-Prey
We now describe Synchronized Predator-Prey, a new variant of the
classical Predator-Prey domain that satisfies the definition of an
MST.

States. The Synchronized Predator-Prey environment is a discrete
10 x 10 grid with 8 predators and 8 prey. However, when considering
sub-teams of three predators, the number of predators increases
to 9. An episode is initialized with all agents randomly placed on
the game grid. An episode ends once all predator sub-teams (i.e.,
number of predators required to capture a prey) have captured a
prey or after 200 timesteps have passed.

Transition Function. Agents are allowed to move one grid
space per timestep. Moreover, predators can either select a capture
action or a movement action (not both in the same timestep). Once a
sub-team of predators have successfully captured a prey, they are all
removed from the game grid for the remainder of the episode. Each
agent occupies one grid square, and no agents may pass through



Figure 1: Synchronized Predator-Prey Task. Blue arrows de-
note movement (neutral) actions and purple arrows denote
capture (synchronization) actions.

Figure 2: Visual representation of the payoff relationship in
the Synchronized Predator-Prey Task for 2-agent sub-teams.
Of note are the strict inequalities between the possible 𝑄-
values.

each other. The predator agents’ actions are controlled by an RL
policy.While the prey agents’ randomly select their movement from
available open positions, or they remain still if no open surrounding
position is available. Unattainable actions, such as moving into an
occupied grid position, capturing without being adjacent to a prey,
or crossing the grid boundary, are considered unavailable.

Actions. All agents have the following five actions: {remain
still, left, right, down, up}, which are considered the neutral ac-
tions (𝐴𝑖, 𝑛𝑒𝑢𝑡 ). Additionally, predators have a sixth action, a ho-
mogeneous capture action for capturing prey agents. To capture,
predators adjacent to a prey must synchronize their capture ac-
tions within the same timestep, which is the synchronization action
(𝐴𝑖, 𝑠𝑦𝑛𝑐 ).

Observations. The observation of a predator consists of a 5 × 5
sub-grid centered around itself, with one channel showing other
predators represented by their id and another indicating prey. The
observation also includes the position of the predator (itself) on the
grid. If a predator has been removed after a successful capture they
receive an observation of all zeros for the remainder of an episode.

Reward. A successful capture of a prey is rewarded with a +10,
but unsuccessful attempts by less than the required sub-team size
are penalized with a -2 miscapture penalty. The maximum reward
is dependent upon the total number of possible sub-teams (e.g., 40

Figure 3: Train episode reward (Mean and shaded Standard
Deviation) for ten independently trained models. The Full
CG topology was used, except for DICG which used an Atten-
tionmechanism to create the graph. Note that SOTAmethods
did not solve MSTs well. Currently, DCG is the best solution
(i.e., (a) and (b)) but cannot scale to larger sub-teams or han-
dle more complex coordination (i.e., (c) and (d)).

for four 2-agent sub-teams and 30 for three 3-agent sub-teams). The
reward is shared by all the predators.

Heterogeneous Synchronized Predator-Prey. A variant of
Synchronized Predator-Prey introduces heterogeneous capture ac-
tions. For the heterogeneous variant, predators adjacent to the prey
must synchronize unique capture actions within the same timestep.
The number of available capture actions is equal to the number of
predators required to capture a prey (i.e., 2 for sub-teams of two
and 3 for sub-teams of three), which are the synchronization actions
(𝐴𝑖, 𝑠𝑦𝑛𝑐 ).

We now show that Synchronized Predator-Prey satisfies the
MST definition presented in Section 3.2. Consider the system states
shown in Figure 1. In each case, A+ (𝑠) is non-empty because there
are two sub-teams of agents for which the execution of synchroniza-
tion actions (as defined above) is optimal, as this would allow for
the capture of the prey. Additionally, A− (𝑠) is non-empty because
there are possible scenarios in which one agent might execute a
synchronization action while the others do not, and doing so would
lead to a large penalty, which is worse than if all the agents had
executed neutral actions (as defined above). Therefore, the Syn-
chronized Predator-Prey task meets the requirements of an MST as
defined in Section 3.2.

Figure 2 provides a visual representation of the payoff relation-
ship when considering 2-agent sub-teams when they are in a state
where successful synchronization is possible. Figure 2a shows the
achievable 𝑄-values dependent on the actions the agents select
when they are using a single homogeneous capture action. Figure
2b shows the achievable 𝑄-values dependent on the actions the
agents select when they are using heterogeneous capture actions.



Figure 4: Train episode reward (Mean and shaded Standard
Deviation) for ten independently trained models. The Full
CG topology was used for (a) and (b), except for DICG which
used an Attention mechanism to create the graph. For (c)
and (d), the Empty CG topology was used for all algorithms.
Note that communication is necessary for MSTs but is not
sufficient when complexity increases.

4 EXPERIMENTS
To evaluate the algorithms introduced in Section 2 in MSTs, we
conducted experiments using the Synchronized Predator-Prey task in
four different configurations. The experimental configurations are
as follows: (1) 2-agent sub-teams with homogeneous capture action,
(2) 2-agent sub-teams with heterogeneous capture actions, (3) 3-
predator sub-teams with homogeneous capture action, and (4) 3-
predator sub-teams with heterogeneous capture actions. In addition,
we used the following Coordination Graph (CG) topologies for our
evaluations: Full - each agent has an edge connection to every other
agent, Empty - no edge connections, and Attention - a special case
for DICG where an attention network generates the coordination
graph at each timestep given the state of the environment.

Figure 3 presents the results of our experiments with Full CG
topology for DCG and QGNN, and Attention used for DICG. In
general, the results showed that current SOTA methods utilizing
coordination graphs had limited success with MSTs (see Figure 3a
& 3b). Out of all the approaches evaluated, DCG performed the
best with MSTs. DCG showed strong performance with 2-agent
sub-teams and homogeneous capture actions but had marginal
performance with heterogeneous capture actions (see Figure 3a &
3b). While QGNN showed marginal performance in the 2-agent
sub-team with homogeneous capture actions condition (see Figure
3a), it failed in the the other conditions Figure 3b-3d). Note these
results differ from those presented in DICG [9] and QGNN [8] as
they were not using an MST for their experiments.

Figure 4 represents performance of the SOTA methods on MSTs
with andwithout communication. For the experiments with commu-
nication, the Full CG topology for DCG and QGNN, and Attention
used for DICG. In contrast, experiments without communication

Figure 5: Train episode reward (Mean and shaded Standard
Deviation) for ten independently trained models. Themis-
capture penalty was disabled for these training iterations.
The Full CG topology was used, except for DICG which used
an Attention mechanism to create the graph. Note with the
miscapture penalty disabled the task no longer satisfies the
requirements for an MST and was solved by all SOTA meth-
ods.

utilized the Empty CG topology. The results provide empirical evi-
dence that some form of communication is needed in order to solve
an MST (compare Figure 4a & 4b to 4c & 4d). These results suggest
communication is necessary to solve an MST. The communication
method used must allow for agents to pass along the information
that will allow them to correctly synchronize their actions.

Disabling the miscapture penalty was explored to confirm that
the SOTA methods could solve a related non-MST task. It should
be noted that the modified task is no longer an MST as defined in
Section 3.2, as there is no difference in the 𝑄-values when taking
neutral actions versus actions that would have been considered
synchronization-negative in the unmodified (MST) task. Figure 5
shows the results of our experiments using Full CG topology for
DCG and QGNN, and Attention used for DICG. The data suggests
that all considered SOTAmethods solved the Synchronized Predator-
Prey task when not constrained by the requirements of an MST
(see Figure 5a-5d). However, DICG was unable to perform when
the sub-team size was greater than two (see Figure 5c & 5d).

Together the results show the following: (1) DCG performs the
best on MSTs, though it is unable to scale to more than 2-agent
sub-teams or handle increased coordination complexity (i.e. hetero-
geneous capture actions), (2) communication is required to solve
an MST, and (3) a penalty is critical to the definition of an MST.

5 DISCUSSION AND CONCLUSION
In this paper, we introduced and defined Multi-Agent Synchro-
nization Tasks (MSTs), a novel multi-agent task subset aimed at
assessing the capabilities of existing methods in addressing coor-
dination challenges within multi-agent systems. Specifically, we
introduced a distinctive Multi-Agent Synchronization Task termed



"Synchronized Predator-Prey," designed to evaluate the effective-
ness of prevailing techniques in handling complex coordination
scenarios.

Our evaluation of SOTA methods on the Synchronized Predator-
Prey task reveals that, currently, no approaches demonstrate robust
performance in solving MSTs. Notably, DCG exhibits promising
results (see Figure 3a & 3b, albeit failing when coordination com-
plexity increases (i.e. for 3-agent sub-teams and/or heterogeneous
synchronization tasks - see Figure 3c & 3d).

Three critical questions and our hypothesized solutions are pre-
sented here based on our experimental analysis. First, given the
success of DCG in MSTs why does it fail to scale (i.e., to 3-agent
sub-teams)? We believe DCG fails to scale mainly because it only
models pairwise payoff factors. Thus, DCG cannot fully represent
the coordination relationship between groups ofmore than 2-agents.
Second, why does DCG struggle to handle heterogeneous capture
actions? We currently hypothesize that DCG struggles with het-
erogeneous capture actions because the action synchronization
facilitated by Max-Plus message passing [7] cannot fully address
the need to coordinate unique actions between partners. Third, why
do methods (DICG & QGNN) utilizing GNNs for message passing
fail to solve Multi-Agent Synchronization Tasks? Our hypothesis
posits that a loss of representational capacity occurs with the tran-
sition from Max-Plus message passing to the GNN message passing.
The lack of representative capacity may result from no longer hav-
ing the payoff function or a failure of the generic GNN messaging
function.

Finally, the results raise questions about the adaptability of GNNs
in capturing the intricacies of complex coordination tasks and
prompt further exploration into the underlying causes of their
limitations in this context. Our ongoing research agenda includes
delving into message passing frameworks to find a solution to
the representational capacity problem we have identified with our
newly defined multi-agent sub-domains we call MSTs. Overall, by
asking these questions we aim to deepen our understanding of
the challenges posed by MSTs and guide future developments in
multi-agent coordination methodologies.

REFERENCES
[1] Derrik Asher, Michael Garber-Barron, Sebastian Rodriguez, Erin Zaroukian, and

Nicholas Waytowich. 2019. Multi-agent coordination profiles through state
space perturbations. In 2019 international conference on computational science and
computational intelligence (CSCI). IEEE, 249–252.

[2] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. 2020. Deep coordination
graphs. In International Conference on Machine Learning. PMLR, 980–991.

[3] Jacopo Castellini, Frans A Oliehoek, Rahul Savani, and Shimon Whiteson. 2019.
The Representational Capacity of Action-Value Networks for Multi-Agent Re-
inforcement Learning. In AAMAS 2019: The 18th International Conference on
Autonomous Agents and MultiAgent Systems. International Foundation for Au-
tonomous Agents and Multiagent Systems (IFAAMAS), 1862–1864.

[4] Rolando Fernandez, Erin Zaroukian, James D Humann, Brandon Perelman,
Michael R Dorothy, Sebastian S Rodriguez, and Derrik E Asher. 2021. Emer-
gent heterogeneous strategies from homogeneous capabilities in multi-agent
systems. In Advances in Artificial Intelligence and Applied Cognitive Computing:
Proceedings from ICAI’20 and ACC’20. Springer, 491–498.

[5] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. 2002. Coordinated rein-
forcement learning. In ICML, Vol. 2. Citeseer, 227–234.

[6] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[7] Jelle R Kok and Nikos Vlassis. 2006. Using the max-plus algorithm for multiagent
decision making in coordination graphs. In RoboCup 2005: Robot Soccer World
Cup IX 9. Springer, 1–12.

[8] Ryan Kortvelesy and Amanda Prorok. 2022. QGNN: Value Function Factorisation
with Graph Neural Networks. arXiv preprint arXiv:2205.13005 (2022).

[9] Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer.
2021. Deep Implicit CoordinationGraphs forMulti-agent Reinforcement Learning.
In Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems. 764–772.

[10] Ryan Lowe, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
2017. Multi-agent actor-critic for mixed cooperative-competitive environments.
Advances in neural information processing systems 30 (2017).

[11] Sylvie Morice, Sylvain Pincebourde, Frédéric Darboux, Wilfried Kaiser, and
Jérôme Casas. 2013. Predator–prey pursuit–evasion games in structurally com-
plex environments. Integrative and comparative biology 53, 5 (2013), 767–779.

[12] Frans A Oliehoek, Christopher Amato, et al. 2016. A concise introduction to
decentralized POMDPs. Vol. 1. Springer.

[13] Liviu Panait, Sean Luke, and R PaulWiegand. 2006. Biasing coevolutionary search
for optimal multiagent behaviors. IEEE Transactions on Evolutionary Computation
10, 6 (2006), 629–645.

[14] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2020. Monotonic value function
factorisation for deep multi-agent reinforcement learning. The Journal of Machine
Learning Research 21, 1 (2020), 7234–7284.

[15] Brian Skyrms. 2001. The stag hunt. In Proceedings and Addresses of the American
Philosophical Association, Vol. 75. JSTOR, 31–41.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Domains
	2.2 Algorithms

	3 Multi-Agent Synchronization Tasks
	3.1 Background
	3.2 MST Definition
	3.3 Example MST: Synchronized Predator-Prey

	4 Experiments
	5 Discussion and Conclusion
	References

