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ABSTRACT
In this study, we delve into Federated Reinforcement Learning
(FedRL) in the context of value-based agents operating across di-
verse Markov Decision Processes (MDPs). Existing FedRL meth-
ods typically aggregate agents’ learning by averaging the value
functions across them to improve their performance. However,
this aggregation strategy is suboptimal in heterogeneous environ-
ments where agents converge to diverse optimal value functions.
To address this problem, we introduce the Convergence-AwarE
SAmpling with scReening (CAESAR) aggregation scheme designed
to enhance the learning of individual agents across varied MDPs.
CAESAR is an aggregation strategy used by the server that com-
bines convergence-aware sampling with a screening mechanism.
By exploiting the fact that agents learning in identical MDPs are
converging to the same optimal value function, CAESAR enables
the selective assimilation of knowledge from more proficient coun-
terparts, thereby significantly enhancing the overall learning effi-
ciency. We empirically validate our hypothesis and demonstrate
the effectiveness of CAESAR in enhancing the learning efficiency
of agents, using both a custom-built GridWorld environment and
the classical FrozenLake-v1 task, each presenting varying levels
of environmental heterogeneity.

KEYWORDS
Reinforcement learning, federated reinforcement learning, hetero-
geneous environments.

1 INTRODUCTION
Federated Reinforcement Learning (FedRL) [14, 20] is a burgeon-
ing field in Reinforcement Learning. Distinct for its collaborative
learning approach, FedRL enables distributed agents to learn col-
lectively while maintaining the privacy of their local data — the
raw trajectories sampled from the local environments. FedRL lever-
ages techniques in Federated Learning (FL), notably Federated Av-
eraging [12], to aggregate agent parameters to improve learning
efficiency. While existing research on FedRL [2–4, 9, 18, 22, 23]
predominantly assumes homogeneous environments, where all local
environments correspond to the same Markov Decision Process
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(MDP) [16] with identical dynamics and rewards, real-world appli-
cations often defy this assumption. For instance, in the healthcare
domain, FedRL holds promise for optimizing predictive models
across various hospitals, each characterized by distinct patient de-
mographics and disease patterns [19]. This diversity among patient
populations and clinical manifestations leads to inherent hetero-
geneity within the data environments shaped by the MDPs.

This challenge is underscored in the research by Hao et al. [6].
While their work investigates FedRL in the context of heteroge-
neous environments, it primarily focuses on training a unified
model to perform consistently across disparate local environments.
This approach, akin to implementing a standard healthcare protocol
across hospitals serving diverse patient populations, may prove to
be impractical. Such a one-size-fits-all approach fails to accommo-
date the unique healthcare needs and specific disease prevalence
of different communities, potentially resulting in suboptimal or
even detrimental outcomes. This underscores the critical need for
tailored approaches that respect and respond to the unique charac-
teristics of each environment.

In contrast, our research is centered on scenarios where each
agent learns a localized policy for its designated MDP. This is analo-
gous to designing customized healthcare strategies for each hospital,
taking into account the unique health demographics and local en-
vironmental influences of their patient population. We explore the
potential of these agents to collaboratively enhance the learning of
localized policies, each specifically tailored to the corresponding
environment. A pivotal assumption in our work is the unknown
nature of both the number of distinct MDPs and the specific assign-
ments of agents to these MDPs.

In response to these challenges, we propose a convergence-aware
adaptive sampling strategy for value-based agents in FedRL set-
tings characterized by heterogeneous environments. This strategy
is based on the insight that value functions of agents optimizing
for the same MDP are expected to converge towards a singular
optimal value over time, thereby naturally reducing the variance
in learning trajectories among these agents, or "peers." Preliminary
experiments suggest that while this strategy is effective in filtering
out "non-peers"—agents whose environmental contexts or MDPs
diverge significantly from one another, leading to disparate optimal
policies and value functions—it might inadvertently prioritize the
inclusion of suboptimal peers. These are agents within the same
MDP whose strategies or learning progress are not as advanced,
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potentially anchoring the group to suboptimal points. To address
this, we introduce an additional screening process, aimed at incor-
porating only those agents that exhibit better performance. This
dual approach of adaptive sampling and selective screening effec-
tively mitigates the risk of suboptimal peer selection, enhancing
the learning efficacy of agents in their respective MDPs.

In this paper, we address the challenges of training individual
policies with environmental heterogeneity in FedRL. We begin by
formulating the problem setup of FedRL in heterogeneous environ-
ments (Sec. 3) and proceed to examine various aggregation schemes
(Sec. 4).We then introduce theConvergence-AwarE SAmplingwith
scReening (CAESAR) aggregation scheme that tailors the average
value functions for individuals to effectively improve their learning
(Sec. 4.5). CAESAR stands out for its dual-layered approach: firstly,
utilizing a convergence-aware sampling mechanism for efficient
peer identification in diverse MDPs (Sec. 4.4); and secondly, in-
corporating a selective screening process (Sec. 4.6) to refine agent
interactions, prioritizing only those agents that demonstrate su-
perior performance. We empirically validate the effectiveness and
robustness of CAESAR to improve agents’ learning using environ-
ments of GridWorld and FrozenLake-v1, engineered for the pur-
pose of illustrating environmental heterogeneity (Sec. 5). We have
made our work publicly available and open-sourced,1 providing
new perspectives and viable approaches for tackling the challenges
of FedRL in heterogeneous settings.

2 PRELIMINARIES
Markov Decision Processes (MDPs). In the realm of reinforce-
ment learning, sequential decision-making problems are commonly
modeled using MDPs [16]. An MDP is characterized by a 6-tuple
(S,A,P,R, 𝛾, 𝜌) whereS denotes the state space,A represents the
action space, P(𝑠′ |𝑠, 𝑎) defines the transition probabilities between
states, R : S × A → R is the reward function, 𝛾 is the discount
factor, and 𝜌 is the initial state distribution.

Q-learning. Q-learning [7] stands as a cornerstone in classical
reinforcement learning, operating as an off-policy temporal dif-
ference algorithm. In Q-learning, an agent learns an action-value
function 𝑄 : S × A → R using a table. The entry 𝑄 (𝑠, 𝑎), also
known as the Q-values, estimates the expected return of taking
action 𝑎 ∈ A in state 𝑠 ∈ S. The value of 𝑄 (𝑠, 𝑎) is updated by
applying the Bellman equation:

𝑄 (𝑠, 𝑎) ← (1 − 𝛼)𝑄 (𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾 max
𝑎′

𝑄 (𝑠′, 𝑎′)) (1)

where 𝑠 is the current state, 𝑎 is the current action to be executed,
𝑟 is the immediate reward, 𝑠′ is the next state, and 𝛼 is the learning
rate. Then a decision policy 𝜋𝑄 can be obtained via exploiting the
updated 𝑄-values:

𝜋𝑄 (𝑠) ← 𝑎𝑡 = arg max
𝑎
𝑄 (𝑠𝑡 , 𝑎) . (2)

The optimal action at state 𝑠𝑡 is defined as 𝑎∗𝑡 = arg max𝑎 𝑄∗ (𝑠𝑡 , 𝑎)
where 𝑄∗ (𝑠𝑡 , 𝑎) is the optimal Q-function which gives the expected
return for starting in state 𝑠𝑡 , taking action 𝑎, and following the
policy thereafter.

1https://github.com/hughiemak/CAESAR

Federated Reinforcement Learning (FedRL). Initially intro-
duced by Zhuo et al. [23], Federated Reinforcement Learning (Fe-
dRL) has gained increasing prominence, evidenced by its exten-
sive application in various real-world scenarios [4, 5, 10, 11, 13, 17,
21, 22] and its substantial theoretical development [3, 6, 8, 9, 18].
Notably, Fan et al. [3] conducted pioneering work on the robust
convergence of federated policy gradients, demonstrating sublinear
speedup. Khodadadian et al. [9], Woo et al. [18] further advanced
the field by showcasing linear speedup in federated Q-learning
under Markovian Sampling. Shen et al. [15] established a linear
speedup for federated Actor-Critic algorithms under i.i.d. sampling.
A common assumption in these related works is the homogeneity
of MDPs across all agents participating in FedRL. This perspective
was expanded by Hao et al. [6], who explored FedRL in the context
of environmental heterogeneity. Their research primarily aimed at
developing a global shared policy model within an imaginary MDP
framework.

3 FEDERATED REINFORCEMENT LEARNING
WITH HETEROGENEOUS ENVIRONMENTS

MDP Configuration. In the FedRL setting under consideration,
we have 𝑁 agents, and a collection of MDPs, where the quantity of
distinct MDPs (𝐾) is less than or equal to 𝑁 . Each MDP, denoted
as𝑀𝑘 , shares a common state space S and action space A, but is
uniquely defined by its transition dynamics P𝑘 (𝑠′ |𝑠, 𝑎) and reward
function R𝑘 : S×A → R. Thus, the MDP𝑀𝑘 is represented by the
6-tuple (S,A,P𝑘 ,R𝑘 , 𝛾, 𝜌𝑘 ), where 𝛾 is the discount factor and 𝜌𝑘
is the initial state distribution specific to MDP𝑀𝑘 . An assignment
function 𝑓 : [𝑁 ] → [𝐾] determines the allocation of each agent to
these MDPs.

Heterogeneity in MDPs. The core of heterogeneity in this set-
ting stems from the differences in transition dynamics and reward
functions among the MDPs. An example of this heterogeneity is
depicted in Fig. 1, where two MDPs share the same state and action
spaces but have distinct reward functions. This diversity in dynam-
ics and rewards exemplifies the complexity and variability agents
encounter in heterogeneous environments.

Operational Assumptions. A pivotal assumption in our ap-
proach is the unknown nature of both 𝐾 (the number of MDPs) and
the assignment function 𝑓 . This uncertainty adds a layer of com-
plexity to the learning process, as agents must navigate and adapt

Figure 1: Two heterogeneous MDPs. MDP𝑀1 rewards −1 for
action 0 and +1 for action 1, while MDP 𝑀2 rewards +1 for
action 0 and −1 for action 1. The optimal value functions are
𝑄1 (𝑠0, 0) = −1, 𝑄1 (𝑠0, 1) = 1 for𝑀1, and 𝑄2 (𝑠0, 0) = 1, 𝑄2 (𝑠0, 1) =
−1 for𝑀2, respectively. Averaging these value functions re-
sults in 𝑄 (𝑠0, 0) = 𝑄 (𝑠0, 1) = 0, showing a misrepresentation
of optimal values for both MDPs.
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to their assigned MDPs without prior knowledge of the overall
system configuration.

Agent Learning and Objectives. Each agent in our system,
denoted as 𝑖 , is a value-based learner, employing techniques such as
Q-learning for policy optimization. Every Agent 𝑖 interacts solely
with a local instantiation of its assigned MDP,𝑀𝑓 (𝑖 ) , from which it
gathers and analyzes sample trajectories to inform its learning. The
primary goal for each agent is to optimize its action-value function
𝑄𝑖 , aiming to achieve optimal expected performance within its
unique local environment. This focus on individual optimization
within a shared learning framework underscores the challenge of
balancing local adaptation with collaborative learning in FedRL.

FederatedUpdates in FedRL. Following existing FedRLwork [3,
4, 9, 23], a central server is available to coordinate the federated
learning. We consider a FedRL training process where a federated
update takes place every 𝐻 local updates. At each local update
step, each agent performs a standard learning step using the value-
based RL algorithm. During the federated update, for each agent
𝑖 , the server will select a subset of agents 𝑆 ⊆ [𝑁 ] and aggregate
their value functions into a new value function 𝑄 . For tabular Q-
learning, a straightforward aggregation method is averaging the
value functions (Q-tables) across selected agents:

𝑄 (𝑠, 𝑎) =
∑︁
𝑗∈𝑆

𝑄 𝑗 (𝑠, 𝑎), ∀𝑠 ∈ S, 𝑎 ∈ A . (3)

After aggregation, the server sends 𝑄 to agent 𝑖 and updates 𝑄𝑖

towards 𝑄 :

𝑄𝑖 (𝑠, 𝑎) ← 𝛽𝑄𝑖 (𝑠, 𝑎) + (1 − 𝛽)𝑄 (𝑠, 𝑎), ∀𝑠 ∈ S, 𝑎 ∈ A (4)

where 𝛽 ∈ [0, 1] is a blending parameter controlling the extent of
update from the federated value function.

A key challenge in the federated update process is determining
the optimal subset 𝑆 for each agent without prior knowledge of 𝑓 ,
the agent’s specific environment, or direct access to its local trajec-
tories. The selection of 𝑆 is pivotal in ensuring that the aggregated
value function 𝑄 is conducive to agent 𝑖’s learning in its MDP. In
Sec. 4, we will explore various aggregation schemes for selecting 𝑆 .

4 AGGREGATION SCHEMES
In this section, we explore various schemes for selecting the subset
of agents, 𝑆 , for each agent 𝑖 , culminating in the introduction of
our novel CAESAR scheme.

4.1 Self
The Self scheme serves as a baseline, where agents learn indepen-
dently, without federated updates. Using this scheme, Eq. (3) can
be viewed as:

𝑄 = 𝑄𝑖 , ∀𝑖 ∈ 𝑁

implying no external influence during the federated update phase.
Consequently, the selected subset 𝑆 only includes the agent itself:

𝑆 = {𝑖}.

It is a fundamental expectation that, for agents to be incentivized to
engage in the federative process, any employed selection scheme

must ensure that the aggregated knowledge surpasses the per-
formance achievable by the Self. This is essential to justify the
collaborative effort in the federative learning context.

4.2 All
The scheme All is another baseline corresponding to the canon-
ical FedRL averaging scheme where all agents are included for
aggregation to compute Eq. (3):

𝑄 (𝑠, 𝑎) =
𝑁∑︁
𝑗=1

𝑄 𝑗 (𝑠, 𝑎) .

In this scheme, the selected subset always includes all agents:

𝑆 = {1, 2, . . . , 𝑁 }.
In a FedRL setting characterized by heterogeneous local environ-
ments, the All scheme may impede the learning process and poten-
tially obstruct convergence. This issue arises because each agent’s
value function, denoted as𝑄 𝑗 , is being optimized for differentMDPs.
In essence, they are converging towards disparate optimal value
functions. Consequently, value functions optimized for one MDP
might adversely affect the aggregated value function 𝑄 , result-
ing in misleading guidance for agent 𝑖 . To illustrate, consider the
scenario with two simple MDPs, 𝑀1 and 𝑀2, as shown in Fig. 1.
Suppose agents 1 and 2 are learning in these MDPs respectively
and have both reached their optimal value functions: 𝑄1 (𝑠0, 0) =
−1, 𝑄1 (𝑠0, 1) = 1 for MDP𝑀1, and 𝑄2 (𝑠0, 0) = 1, 𝑄2 (𝑠0, 1) = −1 for
MDP 𝑀2. However, the averaged Q-values, 𝑄 (𝑠0, 0) and 𝑄 (𝑠0, 1),
both result in 0. These average values are suboptimal for both
MDPs. Updating 𝑄1 and 𝑄2 based on 𝑄 would therefore misguide
the agents and steer them away from their currently optimal val-
ues, highlighting the challenge of aggregation in heterogeneous
environments.

4.3 Peers
The Peers scheme is an unrealistic scheme in our setting that
serves as a hypothetical benchmark. This scheme operates under
the assumption of having prior knowledge of MDP assignments,
denoted as 𝑓 , and including only those agents assigned to the same
MDP as agent 𝑖 . These agents are referred to as the ‘peers’ of agent
𝑖 . The selected subset of agents is therefore

𝑆 = { 𝑗 ∈ [𝑁 ] : 𝑓 (𝑖) = 𝑓 ( 𝑗)}.
Such a presumption renders it impractical in scenarios where this
information is not available, i.e., the server lacks insight into the
peers of agent 𝑖 . Despite this, the scheme serves as a valuable bench-
mark, illustrating the potential advantages of precise, environment-
specific aggregation, such that:

𝑄 (𝑠, 𝑎) =
∑︁
𝑗∈𝑆

𝑄 𝑗 (𝑠, 𝑎), 𝑆 = { 𝑗 ∈ [𝑁 ] : 𝑓 (𝑖) = 𝑓 ( 𝑗)}.

Contrasting with the All scheme (Sec. 4.2), this conceptual ap-
proach offers greater efficiency by exclusively incorporating value
functions that are optimized for the same MDP. This selective ag-
gregation ensures that value functions from disparate MDPs, which
could potentially mislead the learning process, are not included.
Furthermore, this scheme provides a distinct advantage over the
Self scheme, where agents learn in isolation. By leveraging the



collective knowledge of agents assigned to the same MDP, it en-
ables a more targeted and effective aggregation of value functions,
enhancing the overall learning effectiveness.

4.4 Sampling
Inspired by the advantageous attributes of the hypothetical Peers
scheme, we explore the feasibility of devising a similar selection
scheme. Our goal is to accurately identify the peers of Agent 𝑖
without relying on the prior assumption of peer knowledge inherent
to the Peers approach. This task is especially challenging in our
scenario due to the lack of prior knowledge about each agent’s
assigned MDP and the absence of direct access to local trajectories
at the server.

To circumvent this, we propose utilizing the convergence of
agent value functions as a heuristic for peer detection. The main
idea is that if the value functions𝑄𝑖 and𝑄 𝑗 are both being optimized
for the same MDP, they should converge towards a unique optimal
value function 𝑄∗ over time. As a result, the values 𝑄𝑖 (𝑠, 𝑎) and
𝑄 𝑗 (𝑠, 𝑎) for all state-action pairs (𝑠, 𝑎) will progressively become
more similar. We empirically validate this convergence behavior in
a gridworld setting, as detailed in Fig. 4 (Sec. 5.2).

Given this intuition, the convergence of value functions emerges
as a practical heuristic for estimating whether two agents are learn-
ing in the same MDP. This insight leads to our convergence-aware
sampling scheme, Sampling, wherein the subset 𝑆 is sampled based
on probabilities 𝑝𝑖1, . . . , 𝑝𝑖𝑁 . Each probability 𝑝𝑖 𝑗 quantifies the
likelihood of including agent 𝑗 in 𝑆 and is dynamically adjusted
based on the observed convergence between 𝑄𝑖 and 𝑄 𝑗 . At the
onset of training, the server initializes an 𝑁 × 𝑁 matrix 𝑝 , where
the entry 𝑝𝑖 𝑗 is set as:

𝑝𝑖 𝑗 =

{
𝑝0 𝑖 ≠ 𝑗,

1 𝑖 = 𝑗 .
, ∀𝑖, 𝑗 ∈ [𝑁 ] (5)

where 𝑝0 functions as an initial assumption or ‘prior’ about the
task, reflecting the preliminary likelihood of agents being peers
before any learning occurs. By default, it can be assigned a value
of 0 to encourage self-learning at the start of training when the
convergence information is insufficient.

Prior to each federated update, the server updates the entries
𝑝𝑖 𝑗 of the probability matrix 𝑝 . This update is contingent upon
evaluating the evolving similarity between the value functions 𝑄𝑖

and 𝑄 𝑗 . Specifically, the server assesses how the similarity of these
value functions has changed relative to their states observed 𝐻
steps ago. This dissimilarity between two value functions 𝑄 and
𝑄 ′ is defined as the mean absolute difference across all state-action
pairs:

𝑑 (𝑄,𝑄 ′) = 1
|S| × |A|

∑︁
𝑠,𝑎

|𝑄 (𝑠, 𝑎) −𝑄 ′ (𝑠, 𝑎) |.

Let 𝑄 (𝑡 )
𝑘

be agent 𝑘’s current value function and 𝑄 (𝑡−𝐻 )
𝑘

be agent
𝑘’s value function 𝐻 steps ago. For each pair of agents {𝑖, 𝑗}, we
update

𝑝𝑖 𝑗 ←
{

min(𝑝𝑖 𝑗 + 𝛿, 1) if 𝑑 (𝑄 (𝑡−𝐻 )
𝑖

, 𝑄
(𝑡−𝐻 )
𝑗

) − 𝑑 (𝑄 (𝑡 )
𝑖
, 𝑄
(𝑡 )
𝑗
) > 𝜉,

max(𝑝𝑖 𝑗 − 𝛿, 0) otherwise.

where 𝛿 > 0, 𝜉 ≥ 0. This update rule is designed such that if the
value functions 𝑄𝑖 and 𝑄 𝑗 demonstrate a sufficient decrease in dis-
similarity over a specific time window 𝐻 , the server will increase
the probability value 𝑝𝑖 𝑗 . This increment in 𝑝𝑖 𝑗 effectively raises the
likelihood of agent 𝑗 being selected for agent 𝑖’s subset for aggre-
gation. The time window 𝐻 acts as a temporal frame of reference,
enabling the server to assess changes in similarity over a defined
period. Conversely, if 𝑄𝑖 and 𝑄 𝑗 do not exhibit the required degree
of convergence over the time window, 𝑝𝑖 𝑗 is reduced. Persistent
convergence trends lead to a gradual increment in 𝑝𝑖 𝑗 , favoring the
selection of agents with converging value functions. Consequently,
the Sampling scheme dynamically adapts its selection criteria over
time, increasingly favoring the inclusion of agents with value func-
tions that demonstrate a tendency to converge. Parameters 𝛿 and 𝜉
control the sensitivity of 𝑝𝑖 𝑗 adjustments and the required degree
of convergence, respectively.

Algorithm 1: CAESAR

1 ServerExecutes(𝐻, 𝜎, 𝑝0, 𝛿, 𝜉, 𝛽):
2 initialize value functions 𝑄𝑖 for each agent 𝑖 ∈ [𝑁 ]
3 initialize 𝑄𝑜𝑙𝑑

𝑖
← 𝑄𝑖 for each agent 𝑖 ∈ [𝑁 ]

4 initialize matrix 𝑝: 𝑝𝑖 𝑗 =

{
𝑝0 𝑖 ≠ 𝑗,

1 𝑖 = 𝑗 .
,∀𝑖, 𝑗 ∈ [𝑁 ]

5 for each step 𝑡 = 1, . . . ,𝑇 do
6 LocalUpdate(𝑖) for each agent 𝑖 ∈ [𝑁 ]
7 if 𝑡 mod 𝐻 = 0 then
8 𝑔𝑘 ← EvalLocalPerformance(𝑘), ∀𝑘 ∈ [𝑁 ]
9 UpdatePMatrix(𝑝, 𝛿, 𝜉, {𝑄𝑜𝑙𝑑

𝑘
}𝑘 , {𝑄𝑘 }𝑘)

10 FederatedUpdate(𝑖, 𝛽, 𝑝, {𝑄𝑘 }𝑘 , {𝑔𝑘 }𝑘) for
each agent 𝑖 ∈ [𝑁 ]

11 𝑄𝑜𝑙𝑑
𝑖
← 𝑄𝑖 for each agent 𝑖 ∈ [𝑁 ]

12

13 UpdatePMatrix(𝑝, 𝛿, 𝜉, {𝑄𝑜𝑙𝑑
𝑘
}𝑘 , {𝑄𝑘 }𝑘):

14 for agent 𝑖 = 1 to 𝑁 do
15 for agent 𝑗 = 𝑖 + 1 to 𝑁 do
16 𝑝𝑖 𝑗 ←{

min(𝑝𝑖 𝑗 + 𝛿, 1) if 𝑑 (𝑄𝑜𝑙𝑑
𝑖
, 𝑄𝑜𝑙𝑑

𝑗
) − 𝑑 (𝑄𝑖 , 𝑄 𝑗 ) > 𝜉,

max(𝑝𝑖 𝑗 − 𝛿, 0) otherwise.

17

18 FederatedUpdate(𝑖, 𝛽, 𝑝, {𝑄𝑘 }𝑘 , {𝑔𝑘 }𝑘):
19 initialize 𝑆 ′ = {}
20 for 𝑗 ∈ [𝑁 ] do
21 add 𝑗 to 𝑆 ′ with probability 𝑝𝑖 𝑗
22 𝑆 = { 𝑗 : 𝑗 ∈ 𝑆 ′ and 𝑔 𝑗 > 𝑔𝑖 }
23 Construct 𝑄 : 𝑄 (𝑠, 𝑎) = ∑

𝑗∈𝑆 𝑄 𝑗 (𝑠, 𝑎), ∀𝑠 ∈ S, 𝑎 ∈ A
24 Update 𝑄𝑖 :

𝑄𝑖 (𝑠, 𝑎) ← 𝛽𝑄𝑖 (𝑠, 𝑎) + (1 − 𝛽)𝑄 (𝑠, 𝑎), ∀𝑠 ∈ S, 𝑎 ∈ A



4.5 CAESAR
As will be discussed in Sec. 5, the Sampling scheme excels at fil-
tering out non-peers from the set 𝑆 , but it also has a potential
downside: the server might inadvertently incorporate only peers
that are underperforming, confining slow-progressing agents in
suboptimal points in the value function space. To mitigate this issue,
we introduce an additional screening process to refine agent inter-
actions, prioritizing only those agents that demonstrate superior
performance, culminating in the CAESAR aggregation scheme.

In the CAESAR scheme, we initially select a subset of agents based
on the probabilities 𝑝𝑖1, . . . , 𝑝𝑖𝑁 , following the same process as in
Sampling. The primary objective of this sampling step, akin to that
in Sampling, is to identify probable peers by assessing the conver-
gence trends of their value functions. Subsequently, we introduce a
screening layer, which focuses on the comparative performance of
these selected agents. The rationale behind this additional step is
to circumvent the pitfall of updating the value function 𝑄𝑖 towards
the average of lower-performing peers, which could hinder the
convergence of 𝑄𝑖 to its optimal state.

To implement this, the local performance of each agent 𝑘 , 𝑔𝑘 ≈
E𝑀𝑘 ,𝜋𝑄𝑘

[∑∞
𝑡=0 𝛾

𝑡R𝑘 (𝑠𝑡 , 𝑎𝑡 )
]
, is measured prior to the federated

update. During the update, for a given agent 𝑖 , the server initially
samples a preliminary subset of agents, 𝑆 ′, in line with the probabil-
ities 𝑝𝑖1, . . . , 𝑝𝑖𝑁 . It then further refines 𝑆 ′ by retaining only those
agents whose performance, 𝑔 𝑗 , exceeds that of agent 𝑖 (𝑔 𝑗 > 𝑔𝑖 ).
The final subset for aggregation is thus defined as:

𝑆 = { 𝑗 : 𝑗 ∈ 𝑆 ′ and 𝑔 𝑗 > 𝑔𝑖 }

This resulting subset 𝑆 is then utilized to assemble the aggregated
value function 𝑄 for updating 𝑄𝑖 of each agent. This completes the
outlines for the CAESAR scheme. For a detailed procedural break-
down, refer to the pseudocode presented in Algorithm 1.

4.6 Screen
As a complementary approach, the Screen scheme focuses solely
on the screening process based on local performance, without con-
sidering convergence trends:

𝑆 = { 𝑗 : 𝑔 𝑗 > 𝑔𝑖 }

Screen selects agents that are performing better than the target
agent, but may include those from different MDPs. This scheme
tests the efficacy of performance-based selection in isolation.

Each scheme presents a unique approach to aggregating value
functions within a FedRL framework. Our goal, as detailed in Sec. 5,
is to assess the effectiveness of these schemes in enhancing indi-
vidual agent performances, particularly in heterogeneous environ-
ments. This analytical endeavor aims to uncover the most effective
strategies for knowledge aggregation in practical FedRL settings,
thereby providing valuable insights into optimizing agent perfor-
mance in diverse and complex scenarios.

5 EMPIRICAL EVALUATION
5.1 Experimental Settings
In this study, we conduct a comparative analysis of the six aggrega-
tion schemes discussed in Sec. 4. For this comparison, we employ
Q-learning agents within two distinct environments: a custom-built

environment GridWorld and the well-known FrozenLake-v1 task
from the OpenAI Gym toolkit [1].

The GridWorld is designed as a 1-dimensional discrete environ-
ment, characterized by a state space S = {−5,−4, . . . , 4, 5} and a
binary action space A = {0, 1}. The initial state for each episode
is set at 0, with terminal states being 5 and −5. The agent’s ac-
tions impact the state transitions: action 0 moves the state from
𝑥 to 𝑥 − 1, while action 1 advances the state from 𝑥 to 𝑥 + 1. Two
distinct versions of this environment are considered, correspond-
ing to two different MDPs. Fig. 2 provides a visual representation
of these GridWorld environments. In the first MDP (MDP 1), a
transition from state 4 to 5 yields a reward of +1, and a transition
from −4 to −5 results in a reward of −1. All other state transitions
provide a neutral reward of +0. The second MDP (MDP 2) inverts
the reward structure of MDP 1, such that 𝑟2 (𝑠, 𝑎) = −𝑟1 (𝑠, 𝑎) for
all 𝑠 ∈ S and 𝑎 ∈ A). The FrozenLake-v1 environment presents

Figure 2: Two GridWorldMDPs. Their initial states are 0. In
MDP 1 (top), transiting from state 4 to 5 generates a reward
of +1 and transiting from state −4 to −5 yields a reward of −1.
In MDP 2 (bottom), the signs of the rewards are flipped.

a 2-dimensional discrete challenge that effectively encapsulates
the complexities of environmental heterogeneity. In this environ-
ment, agents are tasked with navigating to a designated goal while
avoiding hazardous holes. The environment is characterized by a
four-directional action space, and episodes end with a reward of +1
upon reaching the goal, or +0 if the agent falls into a hole or exhausts
the allowed steps. The heterogeneity of the FrozenLake-v1 envi-
ronment is induced by the distinct map configurations, as shown
in Fig. 3. Each map represents a unique instantiation of a local
MDP within the environment, characterized by its own specific
arrangement of holes and paths, necessitating different strategic
approaches for successful navigation. This diversity in maps pro-
vides a practical scenario to assess how FedRL algorithms perform
across dynamically varied MDPs.

5.2 Hypothesis Verification Using GridWorld
For GridWorld, we partition 𝑁 = 20 agents into 𝐾 = 2 groups,
each comprising 10 agents. These groups are then assigned to two
different MDPs, 𝑀1 and 𝑀2, as depicted in Fig. 2. Each agent is
trained for 𝑇 = 10000 steps with an exploration rate 𝜖 = 0.1, and
receives a federated update every 𝐻 = 100 steps.

ConvergenceAmongPeers. In the relatively simple GridWorld
environment, we capture the agents’ Q-tables every 𝐻 steps. Fig. 4
shows how Q-values 𝑄𝑖 (𝑠, 𝑎) for various state-action (𝑠, 𝑎) pairs
evolve for all agents 𝑖 ∈ [𝑁 ] under Self (independent learning).
The optimal values of these state-action pairs are different for𝑀1



(a) Map 0 (b) Map 1 (c) Map 2

Figure 3: FrozenLake-v1 environments generated by three
different maps. The agent’s task is to navigate to the goal
(the gift box) without falling into the holes.

and𝑀2. Notably, Q-values among peers converge towards the opti-
mal values for their respective MDPs over time, supporting the use
of Q-value convergence as a heuristic for detecting probable peers,
as elaborated in Sec. 4.4.

Figure 4: Convergence of Q-values among peers in GridWorld
under Self. Q-values of 𝑀1 agents (blue) and 𝑀2 agents (or-
ange) converge to their respective optimal values (black dot-
ted lines) for state-actions (𝑠 = −4, 𝑎 = ·) and (𝑠 = −3, 𝑎 = ·) in
GridWorld. 𝜖 is set to 0.9 to speed up convergence.

Comparative Performance Analysis. Fig. 5 illustrates the
average performance (over 30 random seeds) of all agents under dif-
ferent aggregation schemes in GridWorld. We can observe that All
is outperformed by Peers, affirming our hypothesis that including
all agents in 𝑆 to compute 𝑄 according to Eq. (3) is less effective
in heterogeneous environments. The slower learning progress ob-
served under Screen is attributed to its selection based solely on
local performance, often including high-performing agents from
different MDPs. Significantly, CAESAR shows comparable results
to the hypothetical approach Peers, which operates under the
assumption of perfect knowledge about agent-MDP assignments.
Remarkably, CAESAR surpasses both Sampling and Screen, high-
lighting the synergistic effect of their combination on learning
enhancement.

Figure 5: Average performance of the 𝑁 = 20 agents in
GridWorld under different averaging schemes with explo-
ration rate 𝜖 = 0.1. The plot averages independent runs over
30 random seeds where the shadows represent the 95% confi-
dence intervals.

Analysis of Q-Value Evolution. To understand the critical
role of the screening process in the CAESAR scheme, we track the
progression of Q-values throughout the training period. Fig. 7 and
Fig. 8 present the evolution of Q-values for agents assigned to𝑀1
under the Sampling and CAESAR schemes, respectively. These plots
are generated from training sessions with the same random seed
and initial agent configurations. Under Sampling, we notice that
only two agents are able to approximate the optimal Q-values (indi-
cated by black dotted lines), while the remaining agents stagnate at
suboptimal points. In contrast, when employing CAESAR, a uniform
and rapid convergence to optimal values is observed for all agents.

To gain a deeper understanding of the dynamics at play within
the Sampling scheme, we analyze the changes in the 𝑝-matrix
(Sec. 4.4) over various training stages, as illustrated in Fig. 6. This
analysis reveals that Sampling is highly effective in filtering out
non-peers, consistently selecting them with near-zero probability
from timestep 𝑡 = 4000 onwards. However, an intriguing behavior
is observed: Sampling tends to overlook agents who are advancing
quickly in their learning curve, opting instead for peers with slower
progress rates. Specifically, at 𝑡 = 4000 (as shown in the third plot
of Fig. 6), Sampling assigns negligible probabilities to aggregate
values of the fast learners, Agents 5 and 6, into the learning process
of the slower-progressing peers, namely Agents 0, 1, 2, 3, 4, 7, 8, 9, as
shown in Fig. 7. Despite the evident progress of the fast learners,
Sampling scheme leads to a tendency for slower peers to primarily
learn from each other, gravitating towards a consensus that strays
from the optimal value. Such a strategy, while fostering a form of
convergence, risks cementing the learning of slower-progressing
agents around suboptimal values.

In contrast, CAESAR circumvents this issue through its dual-
layered approach: it employs Sampling to effectively identify and
exclude non-peers, and Screen, the screening process that priori-
tizes the inclusion of fast-progressing agents based on their local
performance metrics, as evident in Fig. 8. This strategic selection
tends to aggregate knowledge from faster-progressing peers, whose
value functions 𝑄𝑖 are more optimal for the same MDP. Hence,
CAESAR not only avoids the pitfalls of Sampling but also facilitates



Figure 6: The matrix 𝑝 as a heatmap (yellow and purple indicate 1 and 0 respectively) at 5 different time points under Sampling.
The numbers on the axes correspond the agents, where agents 0 to 9 are assigned to𝑀1 and agents 10 to 19 are assigned to𝑀2.
The color of the cell (𝑖, 𝑗) indicates the probability of selecting agent 𝑗 for agent 𝑖.

Figure 7: Q-values of the𝑀1 agents under Sampling. Two𝑀1
agents, Agent 5 (red curve) and Agent 6 (green curve), exhibit
fast learning progress and converge to the true optimal values
(black dotted lines) but the remaining𝑀1 agents (blue curves),
Agents 0, 1, 2, 3, 4, 7, 8, 9, converge to non-optimal values.

a more effective knowledge transfer, significantly enhancing the
learning efficiency across agents.

5.3 Effectiveness evaluation using
FrozenLake-v1

In our study using FrozenLake-v1, we maintain the same experi-
mental settings as in GridWorld, with 𝑁 = 20 agents divided into
two groups𝐾 = 2, each group comprising 10 agents assigned to two
distinct MDPs𝑀1 and𝑀2, respectively. We assess the performance
of the aggregation schemes under the following scenarios, each
offering a different level of environmental heterogeneity:

(1) Homogeneous environments: 𝑀1 and 𝑀2 are identical,
both generated using the same random map with 4 holes.
An example of such a map is shown in Fig. 3a (a).

Figure 8: Under CAESAR, Q-values of all 𝑀1 agents converge
quickly to the true optimal values (black dotted lines).

(2) Randomly heterogeneous environments𝑀1 and𝑀2 are
distinct, created using two random maps with differing posi-
tions of the 4 holes.

(3) Strongly heterogeneous environments Maps 1 and 2, as
depicted in Fig. 3a (b) and (c) respectively, exhibit a signifi-
cant disparity in difficulty levels, with Map 1 being the easier
and Map 2 the more challenging. The two maps are designed
to have substantial differences in their optimal Q-functions.

Fig. 9 shows the average performance of all agents across the
different aggregation schemes in these scenarios. The results reveal
that CAESAR consistently demonstrates robust performance in all
three scenarios, contrasting with other schemes that struggle in at
least one scenario.

In Scenario 1 (Fig. 9a), with identical MDPs𝑀1 = 𝑀2, All demon-
strates superior learning outcomes compared to Peers. This aligns
with expectations, as all agents are engaged in the same task, mak-
ing the inclusion of the entire agent pool in 𝑆 more effective for
leveraging collective insights. In this context, All benefits from a



(a) Homogeneous environments (b) Random heterogeneous environments (c) Strongly heterogeneous environments

Figure 9: Average performance of the 𝑁 = 20 agents in FrozenLake-v1 under different averaging schemes with exploration
𝜖 = 0.1 in all three settings. The plots average independent runs over 30 random seeds where the shadows represent the 95%
confidence intervals.

broader knowledge base than Peers, which limits its focus to peers,
hence reducing the number of participating agents.

Conversely, in Scenario 2 (Fig. 9b), where𝑀1 and𝑀2 differ, Peers
slightly outperforms All. This indicates that peer-based learning is
more advantageous when agents are dealing with different MDPs,
as it enables more targeted knowledge sharing.

The contrast becomes more pronounced in Scenario 3 (Fig. 9c),
where Peers significantly surpasses All, with the latter even falling
behind Self (independent learning). This scenario underscores the
importance of excluding non-peers from 𝑆 in heterogeneous envi-
ronments. The discrepancy arises from the varying difficulty levels
of 𝑀1 (Map 1) and 𝑀2(Map 2). Agents in the simpler 𝑀1 quickly
master the task, leading to high-value estimates of 𝑄 (𝑠0, 𝑎 =→)
which is not optimal for 𝑀2 where the action 𝑎 =→ often leads
to holes. Therefore, including𝑀1 agents’ value functions in 𝑆 can
detrimentally affect the learning progress of 𝑀2 agents, as their
optimal Q-value functions diverge significantly.

Screen displays a notably inconsistent performance pattern
across different levels of heterogeneity, excelling in Scenarios 1
and 2 but faltering in Scenario 3, where its results are even in-
ferior to those of the independent learning approach, Self. This
phenomenon stems from that the Screen scheme is effectively the
All scheme with an additional screening process. In homogeneous
environments (Scenario 1), where𝑀1 = 𝑀2, this screening process
effectively boosts performance by prioritizing agents with superior
performance. However, in the more complex Scenario 3, Screen
tends to erroneously include high-performing agents from the sim-
pler𝑀1, whose optimal values are counterproductive in𝑀2. As a
result, Screen inadvertently hinders the learning process for 𝑀2
agents by propagating suboptimal Q-values. This issue is clearly
demonstrated in Fig. 9c, where Screen achieves an average perfor-
mance of only 0.5, suggesting that half of the agents are unable to
effectively address their assigned tasks.

CAESAR demonstrates remarkable robustness across all three
scenarios. Notably, in Scenario 1 (Fig. 9a), where 𝑀1 and 𝑀2 are
identical and thus all agents are peers, the inclusion of the sampling
process within CAESAR does not impede learning gains. This is evi-
denced by its performance being on par with Screen, suggesting
that the additional process does not detract from learning efficiency

in homogeneous environments. In scenarios where𝑀1 and𝑀2 dif-
fer, particularly in the more complex Scenario 3, CAESAR continues
to show strong performance, in stark contrast to the diminishing
results of Screen and All. This resilience is primarily attributed to
the sampling process integral to CAESAR, which effectively filters
out non-peers, thereby ensuring that agents are exposed to rele-
vant and beneficial strategies for their specific environments. It is
important to note that while Peers excels in scenario 3, its imple-
mentation is not practical in real applications where the agent-MDP
assignments are not known, as discussed in Sec. 4.3. CAESAR stands
out in practical settings where the degree of heterogeneity among
environments might be unknown or unpredictable. Its consistent
performance across diverse scenarios underscores its suitability as
a versatile and reliable aggregation strategy for FedRL in a practical
setting.

6 CONCLUSION
In this study, we have tackled the intricate challenge of training
distinct policies for agents across diverse environments within
the realm of Federated Reinforcement Learning. Our investigation
entailed a thorough analysis of six different aggregation strategies
within the FedRL paradigm.

The experiments conducted in both customized GridWorld and
FrozenLake-v1 demonstrated the efficacy of Q-value convergence
as a heuristic for peer detection in FedRL. Notably, the proposed
CAESAR scheme stood out for its adaptability and resilience across a
spectrum of environmental heterogeneity, consistently surpassing
other evaluated baselines. This adaptability makes CAESAR particu-
larly advantageous for real-world FedRL applications, where the
unique characteristics of each environment are accommodated.

While our exploration focused on a tabular setting, future re-
search directions include extending our methodologies to more
complex and dynamic environments, especially those featuring
a continuous control space. Furthermore, this work is primarily
centered around agents that employ Q-value-based strategies. Ac-
knowledging this as a limitation, another valuable direction for
future research would be the incorporation of policy-based meth-
ods.
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