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ABSTRACT
This paper introduces a methodology through which a population
of autonomous agents can establish a linguistic convention that
enables them to refer to arbitrary entities that they observe in their
environment. The linguistic convention emerges in a decentralised
manner through local communicative interactions between pairs
of agents drawn from the population. The convention consists of
symbolic labels (word forms) associated to concept representations
(word meanings) that are grounded in a continuous feature space.
The concept representations of each agent are individually con-
structed yet compatible on a communicative level. Through a range
of experiments, we show (i) that the methodology enables a popu-
lation to converge on a communicatively effective, coherent and
human-interpretable linguistic convention, (ii) that it is naturally
robust against sensor defects in individual agents, (iii) that it can
effectively deal with noisy observations, uncalibrated sensors and
heteromorphic populations, (iv) that the method is adequate for con-
tinual learning, and (v) that the convention self-adapts to changes
in the environment and communicative needs of the agents.
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1 INTRODUCTION
Human languages are evolutionary systems, which emerge and
evolve through local communicative interactions between members
of a linguistic community. Processes of variation and selection are at
play during each and every communicative interaction, at the level
of concepts, words and grammatical structures [11, 27, 33, 36, 46].
Variants are introduced as creative solutions to communicative im-
passes and are selected for based on their linguistic, cognitive and
physical fitness [14, 17, 48]. The evolutionary and self-organising
nature of human languages gives rise to a number of unique qual-
ities. First of all, such decentralised, self-organising systems are
known to be robust and to be able to self-repair substantial pertur-
bations [20, 34]. Second, populations of language users converge
on shared conventions that still remain adaptive to changes in
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their environment and communicative needs [1]. Finally, the result-
ing languages effectively serve as an abstraction layer above the
sensory-motor observations and internal mental representations
of individual language users [31]. Indeed, while linguistic forms
can be observed and shared, their meanings remain tied to each
language user’s individual physical and cognitive embodiment.

This agent-based and evolutionary perspective on the human
ability to communicate through language has served as a starting
point for the development of a range of computational method-
ologies that model how artificial agents can co-construct emer-
gent languages that satisfy their communicative needs [see e.g.
7, 13, 15, 25, 29, 43]. Rather than modelling the learning of an ex-
isting natural language, which has emerged and evolved to fit the
communicative needs of a population of human language users,
these methodologies allow for artificial natural languages to emerge
and evolve to optimally support the embodiment, environment and
communicative needs of populations of artificial agents. These lan-
guages are artificial in the sense that they do not exist outside
the experimental set-up, yet natural in the sense that they emerge
and evolve through the same evolutionary principles as human
languages do.

The last decade has witnessed substantial progress when it comes
to the application of these methodologies to a variety of tasks, in-
cluding visual question answering [12], solving puzzles [15], nego-
tiation [6], reference[25], navigation [4, 29, 47] and coordination in
self-driving cars [35]. At the same time, the application-oriented fo-
cus of the experiments has resulted in less attention to themodelling
of the evolutionary mechanisms through which human languages
have emerged and continue to evolve. For example, populations
often consist of two agents only, populations are divided into agents
that can speak and agents that can listen, learning is not decen-
tralised, or agents havemind-reading capabilities. As a consequence,
the languages that emerge do not exhibit the unique qualities of
human languages that originally motivated the experimental para-
digm [48].

In this paper, we go back to the original motivation of computa-
tionally modelling the emergence and evolution of human-like lan-
guages and introduce a methodology through which a population of
autonomous agents can establish, in a fully decentralised manner, a
linguistic convention that enables them to refer to arbitrary entities
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that they observe in their environment. By taking part in situated
and task-oriented communicative interactions, each agent gradu-
ally builds up its own inventory of associations between symbolic
labels (word forms) and concept representations (word meanings).
While all concept representations are individually constructed and
grounded in an agent’s own sensory-motor endowment and experi-
ences, the linguistic systems of all individual agents are compatible
on a communicative level. In prior work, the emergence of a linguis-
tic convention for a set of concepts in discrete worlds (represented
by categorical data) was demonstrated [53]. The emergence of a
shared vocabulary for a set of concepts that are represented as a
set of continuous feature channels was demonstrated by [31], but
their methodology was limited to acquiring concepts that occur in
existing natural languages. In contrast, our methodology is applica-
ble to any dataset that describes entities in terms of combinations
of continuously-valued features and is not limited to concepts or
words that occur in existing natural languages. Until now, this com-
bination of properties has never been achieved together. Apart from
introducing the methodology, we also present a range of experi-
ments that demonstrate the human-like qualities of the emergent
languages. As such, we show that the methodology (i) enables a
population to converge on a communicatively effective, coherent
and human-interpretable linguistic convention, (ii) is naturally ro-
bust against sensor defects in individual agents, (iii) can effectively
deal with noisy observations, uncalibrated sensors and heteromor-
phic populations, (iv) is adequate for continual learning, and (v)
leads to languages that self-adapt to changes in the environment
and communicative needs of the agents.

2 METHODOLOGY
The methodology that we introduce in this paper has its roots in
the language game paradigm, a methodological framework that
was originally conceived to computationally model the origins and
evolution of language [30, 40, 48]. Language game experiments
simulate how populations of agents can learn to communicate
with each other by taking part in pairwise, task-oriented and sit-
uated communicative interactions. Our methodology introduces
an innovative way in which agents represent, invent, adopt and
align concepts, and integrates these representations and processing
mechanisms in a fairly standard language game set-up.

Experiment. Wedefine a language game experiment𝐸 = (𝑊, 𝑃,𝐺)
to be a coupling between a world𝑊 , a population 𝑃 and a sequence
𝐺 = (𝑔 𝑗 )𝑖𝑗=1 of 𝑖 communicative interactions, referred to as games.

Population. The population 𝑃 = {𝑎1, . . . , 𝑎𝑘 } comprises a set of
𝑘 autonomous agents. Each agent 𝑎 ∈ 𝑃 is initialised with an empty
linguistic inventory 𝐼𝑎 = {}. Indeed, the agents do not know any
concepts or words at the beginning of the experiment. Each agent is
endowed with a set of 𝑙 sensors 𝑆𝑎 = {𝑠1, . . . , 𝑠𝑙 } through which it
can observe its environment. All sensors are required to map their
output to values between 0 and 1. The number of sensors and their
types are not necessarily the same for all agents in the population.

World. The world𝑊 = {𝑒1, . . . , 𝑒𝑚} comprises a set of𝑚 entities.
Each entity is represented through a feature vector x, with each
dimension of this vector representing a particular sensor that agents
can be endowed with. Depending on their individual endowment,

agents can thus perceive an entity through a vector that comprises
a subset of these dimensions. The values that are perceived on these
dimensions might also differ from agent to agent, for example when
noise or calibration differences are included in the experimental
set-up. The feature vector x for an entity in𝑊 as perceived by agent
𝑎 ∈ 𝑃 is notated as x𝑎 .

Linguistic inventory. The linguistic inventory 𝐼 of an agent 𝑎 ∈ 𝑃 ,
notated as 𝐼𝑎 , is a potentially empty set of words, with each word
𝑤 ∈ 𝐼 being a coupling𝑤 = (𝑓 , 𝑐, 𝑠) between a word form 𝑓 ∈ 𝐹 , a
concept representation 𝑐 and an entrenchment score 𝑠 . 𝑠 is bound
between 0 and 1. The score is a measure of the word’s effectiveness
in past interactions. 𝐹 is an infinite set of word forms, typically
enumerated through a regular expression.

Concept representation. A concept representation 𝑐 = ((𝜔1, 𝜇1,
𝜎1), ..., (𝜔𝑙 , 𝜇𝑙 , 𝜎𝑙 )) consists of a sequence of couplings between
three numerical values 𝜔 , 𝜇 and 𝜎 . This sequence holds one such
coupling for each sensor with which an agent is endowed. The
weight value 𝜔𝑖 represents the importance of feature channel 𝑖 for
the concept, the mean value 𝜇𝑖 holds the prototypical value for the
concept on this channel and the standard deviation value 𝜎𝑖 holds
the standard deviation for the concept on this channel. Concepts
are thus represented as a sequence of normal distributions, with
one distribution being associated to each feature channel via a
weight that indicates the importance of this feature channel for the
concept.

Game. Each game 𝑔 ∈ 𝐺 proceeds as follows:
(1) Context selection A context 𝐶 = {𝑒1, . . . , 𝑒𝑛} ∈𝑊 consisting

of a subset of 𝑛 entities is randomly selected from the world.
(2) Agent and role selection Two agents 𝑎1, 𝑎2 ∈ 𝑃 are randomly

selected from the population. 𝑎1 is assigned the role of speaker
𝑆 = 𝑎1, while 𝑎2 is assigned the role of listener 𝐿 = 𝑎2. Each
agent perceives the world through its own sensors and has no
access to the ‘objective’ feature vectors of the context 𝐶 (see
World above).

(3) Topic selectionA topic entity𝑇 ∈ 𝐶 is randomly selected from
the context and is only disclosed to the speaker 𝑆 . It is the task
of 𝑆 to draw the attention of the listener 𝐿 to 𝑇 using a word
from the speaker’s linguistic inventory𝑤 ∈ 𝐼𝑆 .

(4) Conceptualisation and production The speaker 𝑆 computes
the similarity 𝑠𝑖𝑚(𝑐, x𝑆 ) between the concept representation
𝑐 = ((𝜔1, 𝜇1, 𝜎1), ..., (𝜔𝑙 , 𝜇𝑙 , 𝜎𝑙 )) of each word in its linguistic
inventory 𝑤 = (𝑓 , 𝑐, 𝑠) ∈ 𝐼𝑆 and the perceived feature vector
x𝑆 = (𝑥1, ..., 𝑥𝑙 ) for each entity in the context 𝐶 . As specified
in Equation 1, this is done by computing for each channel the
z-score of the perceived value given the distributions stored in
the concept representation. These z-scores are then mapped
to values between 0 and 1 by first applying the exponential
function to their absolute values and then computing the multi-
plicative inverse of the result. For each channel 𝑖 in the concept
representation, the resulting value is then weighted according
to the weight value 𝜔𝑖 . 𝜔𝑖 is itself normalised by the sum of the
weights on all channels. This normalisation step avoids an inher-
ent bias towards concept representations with a higher number
of relevant channels. The metric 𝑠𝑖𝑚(𝑐, x𝑆 ) is then computed
as the sum of the resulting values on all channels.



𝑠𝑖𝑚(𝑐, x𝑎) =
𝑙∑︁
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(1)

All words in the speaker’s linguistic inventory, i.e.𝑤 ∈ 𝐼𝑆 , for
which the similarity between their concept representation 𝑐 and
the perceived feature vector for the topic entity𝑇 is larger than
the similarity between 𝑐 and any other entity in 𝐶 are collected
as candidate words. As such, the set of candidate words corre-
sponds to all words in the speaker’s inventory that distinguish
the topic entity from the other entities in the context. Then, the
candidate words are ranked according to their communicative
adequacy, computed as the product of their entrenchment score
𝑠 and their discriminative power 𝐷𝑃 . The 𝐷𝑃 is computed as
the similarity between 𝑐 and 𝑇 minus the similarity between 𝑐
and the closest other entity in 𝐶 . In other words, it measures
how well the topic is discriminated from all other objects using
the concept 𝑐 . The word form 𝑓 of the candidate word with the
highest communicative adequacy is then uttered by 𝑆 as the
utterance𝑈 .𝑈 is shared between 𝑆 and the listener 𝐿. If there
are no candidate words in 𝐼𝑆 :

(4a) Invention A new word𝑤 = (𝑓 , 𝑐, 𝑠) is added to the speaker’s
linguistic inventory 𝐼𝑆 , with 𝑓 being randomly selected from
the infinite set of forms 𝐹 (see Linguistic inventory above) and
𝑠 being assigned a default initial value. The concept repre-
sentation 𝑐 = ((𝜔1, 𝜇1, 𝜎1), ..., (𝜔𝑙 , 𝜇𝑙 , 𝜎𝑙 )) is initialised with
𝜇1 ...𝜇𝑙 being the values of the perceived feature vector x𝑆 ,
𝜎1 ...𝜎𝑙 being assigned a default initial value, and 𝜔1 ...𝜔𝑙 be-
ing assigned a default initial value as well. Then, 𝑓 is uttered
as𝑈 .

(5) Comprehension and interpretation The listener 𝐿 observes
the utterance 𝑈 . If 𝐿 knows a word with the form 𝑈 , i.e. 𝑤 =

(𝑈 , 𝑐, 𝑠) ∈ 𝐼𝐿 , 𝐿 computes the similarity between 𝑐 and every
entity in the context 𝐶 using the similarity metric specified in
Equation 1. 𝐿 then points to the entity that is most similar to 𝑐 . If
𝐿 does not know a word with the form 𝑈 , no pointing happens
and 𝐿 signals that it could not understand.

(6) Feedback If the listener 𝐿 pointed to the topic entity 𝑇 , the
speaker 𝑆 signals success. Otherwise, 𝑆 signals failure and pro-
vides feedback by pointing to 𝑇 1.

(7) Alignment If the game 𝑔 was successful, the speaker 𝑆 will
increase the score 𝑠 of the used word 𝑤 = (𝑈 , 𝑐, 𝑠) ∈ 𝐼𝑆 by a
fixed reward value. At the same time, the scores of the word’s
competitors, i.e. all other𝑤 ∈ 𝐼𝑆 that were earlier identified as
candidate words (see Conceptualisation and production above),
are decreased by a value that is proportional to how similar
their concept representation is to the concept representation
of the used word. This value is computed by multiplying the
similarity between both concept representations by a fixed inhi-
bition value. As specified in Equation 2, the similarity between
two concept representations is computed as the sum over all

1Pointing and observing the pointing of others are implemented by revealing the
feature vector for the topic entity. However, this always remains the feature vector x𝑎
as perceived through the sensors of the individual agent 𝑎 (i.e. the objective ’world’
vector x is never revealed). The link between these subjective vectors and the objective
vector is kept for computing the external evaluation metrics.

channels of the Hellinger similarity between the corresponding
distributions [19], multiplied by the similarity between their
normalised weights and their average normalised weight.
The Hellinger similarity component is included to reflect the
relative importance of the similarity between the distributions
for corresponding channels, where closer distributions lead to
a higher similarity. The similarity of normalised weights compo-
nent is included to reflect the relative importance of the simi-
larity between the weights on corresponding channels, where
a smaller difference between the weights indicates a higher
similarity between the channels. Finally, the average normalised
weights component is included to reflect that channel similari-
ties are more meaningful if channel weights are higher, with
channels holding a higher average weight contributing more to
the overall similarity score.
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(2)

The listener 𝐿 then collects all words in its linguistic inventory
that can be considered candidate words according to the proce-
dure described in Conceptualisation and production above (now
based on 𝐼𝐿 and x𝐿 instead of 𝐼𝑆 and x𝑆 ). The scores of the word
with form 𝑈 and of the competing words are updated in the
same way as is done for the speaker.
Both 𝑆 and 𝐿 will also update their concept representation asso-
ciated to𝑈 based on the context 𝐶 (as perceived by the individ-
ual agents). On each channel 𝑖 , they update 𝜇𝑖 and 𝜎𝑖 to include
their perceived feature vector (x𝑆 or x𝐿) using Welford’s online
algorithm [52]. The weights on the channels are also updated
for both 𝑆 and 𝐿. In a first phase, the channels with a positive dis-
criminative power (see Conceptualisation and production above)
are identified, i.e. the channels that have a higher similarity to
𝑇 than to any other entity in 𝐶 according to Equation 1. Then,
all subsets of the powerset of all channels that at least contain
the set of channels with positive discriminating power are con-
sidered, and the subset with the highest discriminative power
for𝑇 with relation to𝐶 is selected. The weights on the channels
in this subset are increased by a fixed step on a sigmoid func-
tion and the weights on the other channels are decreased by a
fixed step on the same function. The weight values are thereby
bounded between 0 and 1, with values becoming more stable
as they approach 0 or 1.
If the game 𝑔 was not successful, there are two distinct cases for
alignment. If the failure was due to the 𝐿 pointing to a different
entity than 𝑇 , 𝑆 will decrease the score of𝑤 = (𝑈 , 𝑐, 𝑠) ∈ 𝐼𝑆 by



Table 1: Overview of parameterswith standard default values.

Description Parameter Default

# agents in population 𝑘 10
# entities in context 𝑛 3...10
# sensors per agent 𝑙 all (homomorphic)
initial entrenchment score 𝑠𝑖 0.5
entrenchment reward 𝑠𝑟 +0.1
entrenchment punishment 𝑠𝑝 −0.1
entrenchment inhibition 𝑠𝑙𝑖 −0.02 ∗ 𝑠𝑖𝑚(𝑐𝑞, 𝑐𝑟 )
initial standard deviation 𝜎𝑖 0.01
initial channel weight 𝜔𝑖 0.5
sigmoid function 𝑓 1

1+𝑒−1/2𝑥
channel weight reward 𝑐𝑟 +1
channel weight punishment 𝑐𝑝 −5

a fixed value. 𝐿 will also decrease the score of𝑤 = (𝑈 , 𝑐, 𝑠) ∈ 𝐼𝐿

by a fixed value and update 𝑐 based on 𝑇 with relation to 𝐶 in
the same way as if the game would have been successful. If the
failure was due to 𝐿 not knowing a word 𝑤 = (𝑈 , 𝑐, 𝑠), 𝑆 will
decrease the score of𝑤 = (𝑈 , 𝑐, 𝑠) ∈ 𝐼𝑆 by a fixed value and 𝐿

will adopt the word as follows:
(7a) Adoption A new word 𝑤 = (𝑈 , 𝑐, 𝑠) is added to 𝐼𝐿 , with

𝑠 being assigned a default initial value. The concept repre-
sentation 𝑐 = ((𝜔1, 𝜇1, 𝜎1), ..., (𝜔𝑙 , 𝜇𝑙 , 𝜎𝑙 )) is initialised with
𝜇1 ...𝜇𝑙 being the values of the perceived feature vector 𝑋𝐿 ,
𝜎1 ...𝜎𝑙 being assigned a default initial value, and𝜔1 ...𝜔𝑙 being
assigned a default initial value as well.

The formal definition of the methodology specifies a number of
parameters that need to be set when carrying out concrete experi-
ments. A first set of parameters concerns the general experimental
set-up. It specifies the number of agents in the population (𝑘), the
number of entities in the context of a single communicative inter-
action (𝑛), and, per agent, a list of sensors with which it is endowed.
The second set of parameters specifies how the scores of words
are updated after each interaction. It specifies the initial score of
words that are invented or adopted (𝑠𝑖 ), along with update rules for
words that were used successfully (𝑠𝑟 ), for words that were used
unsuccessfully (𝑠𝑝 ), and for words that compete with words that
were used successfully (𝑠𝑙𝑖 ). The final set of parameters concerns
the initialisation and updating of concept representations. It speci-
fies the initial weight and standard deviation for feature channels
in new concepts (𝜔𝑖 and 𝜎𝑖 ), the sigmoid function along which
channel weights are increased or decreased (𝑓 ) and the step on this
function by which the weights are shifted in case of success (𝑐𝑟 ) or
failure (𝑐𝑝 ). An overview of these parameters along with standard
default values is provided in Table 1. The supplementary material
details the hyperparameter tuning process.

3 EXPERIMENTAL VALIDATION
This section presents a range of experiments that were designed
to serve as an initial validation of the methodology introduced
in Section 2, as well as to demonstrate the robustness, flexibility
and adaptivity of the emergent languages. Three datasets were

chosen for this experimental validation, based on their public avail-
ability, the fact that they describe entities in terms of continuous
features, and the diversity of domains that are covered. The first
dataset (henceforth CLEVR) makes use of the images of the CLEVR
dataset [21], which were preprocessed according to the procedure
described by Nevens et al. [31]. Concretely, the resulting dataset
comprises 85,000 images, in which each depicted object is repre-
sented through a feature vector. The 20 dimensions of these feature
vectors correspond to information obtained through computer vi-
sion techniques, including the number of corners of an object, its
width-height ratio, its color channel values, and its position on
the horizontal and vertical axes. The second dataset (henceforth
WINE) concerns the Wine Quality dataset [9], which holds infor-
mation about 4898 wine samples along 11 dimensions that describe
their physicochemical characteristics (e.g. acidity, residual sugar,
alcohol and sulphates). The third dataset, called Credit Card Fraud
Detection [10] (henceforth CREDIT), holds 284,807 entries of finan-
cial transactions described along 28 dimensions resulting from a
principal component analysis. As such, the resulting datasets cover
three very different types of data, ranging from visual scenes over
physicochemical analyses to principal components extracted from
financial transaction records.

For each of the three datasets, the data is split into training and
test sets. For each split, a set of scenes is created. Each scene consists
of a unique sets of 3 to 10 entities that can serve as the context
for a language game (see the Context selection step in Section 2).
In other words, a scene represents the ‘environment’ in which the
communication interaction takes place. Each scene consists of 3 to
10 entities. Due to split, entities that occur in a training scene are
excluded from being part of a test scene.

3.1 Emergence of a communicatively effective,
coherent and interpretable convention

The first experiment validates themethodology on the three datasets,
thereby adopting the default parameter settings listed in Table 1.
The results are analysed in terms of three quantitative metrics
grounded in the language game paradigm: degree of communicative
success, degree of linguistic coherence and average linguistic inventory
size. The degree of communicative success reflects how successful
a population of agents is at solving the game task. It is computed as
the average outcome of the last 1,000 games, where success counts
as 1 and failure as 0 (see the Feedback step of the game descrip-
tion is Section 2). The degree of linguistic coherence quantifies
inhowfar the different agents in the population would produce the
same utterance under the same circumstances, thereby measuring
convergence towards a predictable linguistic convention. It is com-
puted for each game as a binary measure that indicates whether
the listener agent would have used the same utterance as the one
produced by the speaker agent to describe the topic entity, if this
agent would have been the speaker. This binary measure is then
averaged over the last 1,000 games. Finally, the average linguistic
inventory size reflects the number of distinct words that are in
‘active use’. It is calculated as the average number of distinct words
uttered by the agents during the last 1,000 games in which they
took up the speaker role.



The experimental results obtained on the test portions of the
three datasets are listed in Table 2. The table reports the average
performance on the three metrics over 10 independent experimen-
tal runs, along with a value that indicates the spread of the results
in terms of two standard deviations. The results show that the
methodology enables a population of agents to converge on a com-
municatively effective and coherent linguistic convention in each
of the task environments, with a degree of communicative success
above 99.5% and a degree of linguistic coherence above 87.5%. The
average linguistic inventory size of the agents revolves around 50
words in each of the task environments. Examples of words that
have emerged during the different experiments are shown in Figure
1. Figure 1a visualises a word with the form “demoxu” that emerged
in agent 1 in the CLEVR experiment and was fully entrenched after
1,000,000 games (𝑠 = 1.0). The concept representation of this word
includes three relevant dimensions (𝜔 > 0.0): area, bb-area and
rel-area. The values on these dimensions respectively represent,
normalised on a scale between 0 and 1, the number of pixels within
an entity’s boundaries, the number of pixels within an entity’s rect-
angular bounding box, and the ratio between an entity’s area and
the number of pixels in the entire image. When mapping the bb-
area and rel-area values back to raw pixel counts, we can interpret
that the word prototypically refers to entities with an area of 1344
pixels (standard deviation of 76.8 pixels), a bounding box of 1574
pixels (standard deviation of 115 pixels), and covering just under 1%
of the image. In human terms, these are objects with a small visible
surface that fill a large part, yet not all, of their bounding box. When
looking at agent 1’s use of this word throughout the experiment, it
is indeed used in 73% of all cases to refer to small spheres. Figure
1b visualises a word with the form “zapose” that emerged in agent
1 in the WINE experiment and was fully entrenched after 1,000,000
games (𝑠 = 1.0). The concept representation of this word has spe-
cialised towards a single relevant dimension (𝜔 > 0.0), namely the
amount of residual sugar. When mapping the 𝜇 and 𝜎 values back
to grams per liter, we can interpret that the concept representation
prototypically refers to entities with a residual sugar content of
12,34 g/l (standard deviation of 1.39 g/l). In human terms, the con-
cept can thus be used to refer to medium sweet wines. Figure 1c
visualises a word with the form “bogezi” that emerged in agent 1 in
the CREDIT experiment and was fully entrenched after 1,000,000
games (𝑠 = 1.0). The concept representation of this word has spe-
cialised towards a low value range on a single relevant dimension
(𝜔 > 0.0), namely the second PCA component. When it comes to
interpretability, the three example words illustrate that the concept
representations are interpretable up to the interpretability of the
input dimensions. Indeed, if these dimensions are meaningful to hu-
mans, for example in the case of visual features, physico-chemical
characteristics or other sensor measurements, the resulting con-
cepts are equally human-interpretable. If these features correspond
to dimensions that are more difficult to interpret by humans, such
as PCA components, a communicatively effective and coherent
linguistic convention with transparent concept representations still
emerges, but the interpretation difficulty of the input dimensions
percolates to the concept representations.

Figure 2 provides more insight into the evolutionary dynamics
that take place during the training phase of the CLEVR experiment.
The graph shows the degree of communicative success (solid line,

Table 2: Results on the three test sets in terms of communica-
tive success, linguistic coherence and linguistic inventory
size. Mean and 2 standard deviations computed over 10 runs.

Dataset Comm. suc. ↑ Ling. coh. ↑ Inv. size ↓
CLEVR 99.65 ± 0.13 93.86 ± 1.09 46.72 ± 2.45
WINE 99.74 ± 0.15 88.67 ± 1.92 52.67 ± 2.93
CREDIT 99.67 ± 0.13 87.72 ± 2.50 51.43 ± 2.49
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Figure 1: Examples of emerged concepts for the CLEVR (a),
WINE (b) and CREDIT (c) datasets.

left y-axis), the degree of linguistic coherence (dotted line, left y-
axis) and the average linguistic inventory size (dashed line, right
y-axis) as a function of the number of games that are played. The
degree of communicative success starts at 0, as all agents start with
an empty linguistic inventory. It rises to about 90% after 50,000
games, and continues to grow to over 99.5% over the course of the
1,000,000 games that are played. The degree of linguistic coherence
roughly follows the same dynamics as the degree of communicative
success, although the growth is much slower. After 1,000,000 games,
the degree of linguistic coherence has reached about 90% as it
continues to increase. The average linguistic inventory size shows
the typical ‘overshoot pattern’ that is found in many language
emergence experiments [48]. Indeed, many words emerge during
the initial phase of the experiment, as the individual agents are
constantly faced with the need to invent. Then, as a result of the
rewarding and punishing of words during the alignment phase
of each game, the population converges towards a smaller set of
words. The graph shows that the peak linguistic inventory size lies
around 90 words, while an average of just over 50 words is reached
after 1,000,000 games. Note that these numbers are not the same
as those reported for the test set in Table 2. Indeed, words that are
too specific to adequately describe previously unseen entities are
never used by the agents at test time, reducing the number of words
in ‘active use’. The same dynamics as those shown in Figure 2 for
CLEVR also materialise in the WINE and CREDIT experiments, but
could not be included graphically due to space limitations.
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Figure 2: Evolutionary dynamics during the training phase
of the CLEVR experiment: degree of communicative success,
degree of linguistic coherence and average linguistic inven-
tory size as a function of the number games that are played.

3.2 Compositional generalisability of the
emergent concepts

The second experiment assesses the generality of the emergent
concepts in terms of their adequacy to refer to entities that exhibit
previously unseen attribute combinations, a challenge referred to
as compositional generalisability [21, 23]. We therefore apply the
methodology to a variation on CLEVR that is based on the CLEVR
CoGenT dataset [21]. CLEVR CoGenT was especially designed to
test the robustness of intelligent systems against correlations that
occur at training time but not at test time. As such, a number of
biases are included in the scenes by imposing restrictions on the
composition of entities. In particular, in the training scenes, all
cubes are either grey, blue, brown or yellow, while cylinders are
always red, green, purple, or cyan. Test set A contains scenes that
are subject to the same correlations. Test set B however consists of
scenes that are subject to a different set of correlations, with cubes
always being red, green, purple or cyan, and cylinders always being
grey, blue, brown or yellow. There are no restrictions on the colour
of spheres in either of the splits. Test set A can be used to assess
how well a learnt model performs in a standard machine learning
setting, in which the training and test sets are drawn from the same
distribution. Test set B can be used to assess whether the learnt
model generalises beyond the correlations that characterise the
training set. For the purposes of this experiment, we built a training
set and two test sets using the CLEVR CoGenT images through the
same two-stage process as the one that was used for creating the
CLEVR, WINE and CREDIT datasets. The results of this experiment,
which are provided in Table 3, show that the performance of the
agents on test set A and test set B is very similar in terms of degree
communicative success (99.63% vs. 99.62%), degree of linguistic
coherence (93.50% vs. 93.51%) and average linguistic inventory size
(47.63 words vs. 47.58 words). The compositional generalisability
experiment thereby confirms that the emerged linguistic conven-
tion does not break down when faced with the need to refer to
entities that instantiate previously unseen attribute combinations.

Table 3: Results of the compositional generalisability experi-
ments, showing a similar performance in both conditions.

Dataset Comm. suc. ↑ Ling. coh. ↑ Inv. size ↓
CoGenT A 99.63 ± 0.12 93.50 ± 1.96 47.63 ± 3.40
CoGenT B 99.62 ± 0.12 93.51 ± 1.83 47.58 ± 3.59

Table 4: Results of the experiments that validate the applica-
bility of the methodology to heteromorphic populations.

Condition Comm. suc. ↑ Ling. coh. ↑ Inv. size ↓
HOM-19 99.66 ± 0.12 93.75 ± 1.26 46.34 ± 3.62
HET-19 98.47 ± 1.33 89.73 ± 3.62 48.25 ± 2.68
HOM-10 99.60 ± 0.42 92.82 ± 2.93 47.33 ± 6.35
HET-10 85.55 ± 9.54 59.00 ± 14.54 52.68 ± 8.23

3.3 Applicability to heteromorphic populations
The third experiment assesses the applicability of the methodology
to heteromorphic populations, in our case populations in which
not all agents are equipped with the same combination of sensors.
For this purpose, we set up a variation on the CLEVR experiment
in which each individual agent has access to a randomly selected
subset of the 20 dimensions that are provided by the dataset. This
means in practice that almost all games are played by two agents
that do not perceive the same entities through the same dimensions.
Concretely, we run two instances of the experiment in which the
agents are respectively endowed with combinations of 19 and 10
randomly selected sensors (HET-19 and HET-10). In order to estab-
lish a meaningful basis for comparison, we also run a version of the
experiment with homomorphic populations in which the agents are
endowed with the same number of sensors (HOM-19 and HOM-10).
In the homomorphic setting, the sensor combination is randomly
selected for each agent at the beginning of each experimental run
and remains constant throughout the experiment.

The test results of the experiment are listed in Table 4. When
moving from the homomorphic to the heteromorphic setting, the
degree of communicative success decreases from 99.66% to 98.47%
with 19 out of 20 sensors available and from 99.60% to 85.55% with
only 10 out of 20 sensors available. The degree of linguistic co-
herence drops to a larger extent, from 93.75% to 89.73% and from
92.82% to 59.00%. At the same time, the average linguistic inventory
size increases from 46.34 to 48.25 words and from 47.33 to 52.68
words. The experiment thereby confirms that a high degree of com-
municative success can still be reached even if agents are equipped
with very different combinations of sensors. Unsurprisingly, there
is more variation in the words that are used by the agents in the
heteromorphic setting, as agents will tend to use words that op-
timally fit their own sensory apparatus. This increased variation
is reflected by the observed drop in degree of linguistic coherence
and rise in average linguistic inventory size.

3.4 Robustness against sensor defects
The fourth experiment validates the robustness of the methodol-
ogy against sensor defects that occur in individual agents. For this
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Figure 3: Evolutionary dynamics during the training phase
of the CLEVR experiment in which each agent loses access
to 1 or 10 sensors after 500,000 games.

purpose, we run a version of the CLEVR experiment in which the
agents suffer from a sudden malfunction after 500,000 games. To
simulate this malfunction, all agents lose access to a predefined
number of sensors, which are randomly selected for each individual
agent. The dynamics of the experiment are visualised in Figure
3 for experimental conditions in which the agents lose access to
respectively 1 and 10 of their 20 sensors (DEF-1 and DEF-10). As is
to be expected, the degrees of communicative success and linguistic
coherence drop at the moment of the malfunction. As the linguistic
convention adapts to the new circumstances, we observe a tem-
porary rise in the average linguistic inventory size and a partial
recovery of the degrees of communicative success and linguistic
coherence.

The results on the test set are provided for both conditions in Ta-
ble 5 along with the results of the HET-19 and HET-10 experiments
as a basis for comparison. The degree of communicative success
amounts to 98.31% in the setting where one sensor malfunctions
and to 89.95% in the setting with 10 malfunctioning sensors. The
degree of linguistic coherence amounts to 90.15% and 66.61% re-
spectively, while the average number of words in use amounts to
47.05 and 47.72 respectively. Note that the experimental conditions
after the malfunction correspond in fact to those of the experiments
with heteromorphic populations reported on in Section 3.3. When
comparing both results, we can see that the performance after the
malfunction is still better in terms of all three metrics than the per-
formance achieved in the experiments where the agents never had
access to all sensors. The experiment thereby demonstrates on the
one hand that the methodology is robust against extensive sensor
defects in individual agents, and on the other hand that the emer-
gence of an effective linguistic convention before a malfunction
can remain beneficial even in the long term.

Table 5: Results of the experiments that validate the robust-
ness of the methodology against sensor defects in individual
agents.

Condition Comm. suc. ↑ Ling. coh. ↑ Inv. size ↓
DEF-1 98.31 ± 1.67 90.15 ± 2.99 47.05 ± 3.82
HET-19 98.47 ± 1.33 89.73 ± 3.62 48.25 ± 2.68
DEF-10 89.95 ± 4.28 66.61 ± 7.55 47.72 ± 3.20
HET-10 85.55 ± 9.54 59.00 ± 14.54 52.68 ± 8.23

Table 6: Results of the experiments that assess the robustness
of the methodology against differences in perception.

Condition Comm. suc. ↑ Ling. coh. ↑ Inv. size ↓
CLEVR 99.65 ± 0.13 93.86 ± 1.09 46.72 ± 2.45
SHIFT-0.1 99.62 ± 0.13 93.48 ± 2.02 46.82 ± 1.60
SHIFT-1 99.61 ± 0.14 93.73 ± 1.44 46.16 ± 4.01
NOISE-0.1 98.40 ± 0.63 82.65 ± 3.07 47.72 ± 2.28
NOISE-1 87.04 ± 2.44 46.58 ± 1.27 49.00 ± 6.38

3.5 Robustness against differences in perception
The fifth experiment assesses the robustness of the methodology
against differences in the agents’ perception of the world, which
corresponds in our experiments to the way in which the perceived
feature vectors x𝑆 and x𝐿 are computed from an entity’s ‘objective’
feature vector x (seeWorld in Section 2). Concretely, we simulate
two different scenarios. In the first scenario, the agents record differ-
ent sensor values because of a lack of calibration. This is simulated
by shifting x𝑆 and x𝐿 with respect to x by a value that is individually
set for each sensor of each agent at the beginning of each experi-
mental run. These values are sampled from a normal distribution
with a mean of 0 and a standard deviation of either 0.1 (SHIFT-0.1),
simulating slight calibration differences, or 1.0 (SHIFT-1), simulat-
ing substantial calibration differences. In the second scenario, the
sensor values recorded by the agents are subject to noise. This is
simulated by shifting x𝑆 and x𝐿 with respect to x by a value that is
independently sampled for each sensor of each participating agent
at the start of each game from normal distributions with a mean of
0 and a standard deviation of 0.1 (NOISE-0.1) or 1.0 (NOISE-1).

The results of the perceptual difference experiment are provided
in Table 6 in comparison to the original CLEVR experiment. We
can see that a lack of calibration has no significant effect on the
experimental results. The presence of sensor noise leads to a non-
catastrophic decrease in degree of communicative success (from
99.65% to 98.40% and 87.04%). The decrease in degree of linguistic
coherence is more substantial (from 93.86% to 82.65% and 46.58%)
and is accompanied by a slight increase in the average linguistic
inventory size (from 46.72 to 47.72 and 49.00). The experiment
thereby shows that the methodology does not break down when
faced with agents that perceive the world differently. It also con-
firms the trend observed in the previous experiments that more
challenging experimental conditions lead to more variation in lan-
guage use, while remarkable degrees of communicative success can
still be achieved.



Table 7: Results of the continual learning experiment.

Condition Comm. suc. ↑ Ling. coh. ↑ Inv. size ↓
CLEVR 99.61 ± 0.11 93.75 ± 1.85 46.41 ± 2.67
CLEVR-WINE 99.72 ± 0.20 88.13 ± 2.34 52.40 ± 2.49
CLEVR-CONT 99.60 ± 0.14 93.72 ± 1.83 46.36 ± 2.34
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Figure 4: Evolutionary dynamics during the continual learn-
ing experiment, in which a model is first trained on CLEVR
and then on WINE.

3.6 Adequacy for continual learning
The final experiment assesses the adequacy of the methodology for
continual learning, focussing in particular on its robustness against
catastrophic forgetting [16, 28]. For the purposes of this experiment,
we (i) train a model on the CLEVR training set, (ii) evaluate it on
the CLEVR test set, (iii) continue to train it on the WINE training
set, (iv) evaluate it on the WINE test set, and (v) evaluate it again on
the CLEVR test set. The dynamics of the experiment are shown in
Figure 4. Unsurprisingly, the first 1,000,000 games exhibit the same
dynamics as those observed for the original CLEVR experiment
shown in Figure 2. When moving to WINE after 1,000,000 games,
the degrees of communicative success and linguistic coherence drop
to 0 but rapidly increase again as if a new experiment would have
started. The average linguistic inventory size quickly rises as many
new words are invented to accommodate the WINE dataset. Then,
this number gradually decreases as the words that are not adequate
for describing wine samples cease to be used by the agents.

The results of the experiment are shown in Table 7. After training
on CLEVR, a degree of communicative success of 99.61% is obtained
on the CLEVR test set, along with a degree of linguistic coherence
of 93.75% and an average linguistic inventory size of 46.41 (CLEVR).
After continuing to train on WINE, the agents achieve a degree
of communicative success of 99.72% on the WINE test set, along
with a degree of linguistic coherence of 88.13% and an average
linguistic inventory size of 52.40 (CLEVR-WINE). These numbers
indeed match those recorded in the original CLEVR and WINE
experiments. When evaluating the model on the CLEVR test set
after training first on CLEVR and then on WINE, the results that
are obtained do not deviate significantly from the results obtained
before training on wine (CLEVR-CONT). The experimental results
thereby confirm that the methodology is adequate for continual
learning and is not susceptible to catastrophic forgetting.

4 DISCUSSION AND CONCLUSION
This paper has introduced a methodology through which a com-
municatively effective, robust and adaptive linguistic convention
can emerge in a population of autonomous agents. The linguis-
tic convention emerges in a decentralised manner through local,
task-oriented and situated communicative interactions that take
place between pairs of agents drawn from the population. The lin-
guistic convention takes the form of symbolic labels associated to
concept representations that are grounded in a multi-dimensional,
continuous feature space. These form-meaning associations are
individually constructed by each agent and are shaped by their past
successes and failures in communication. The methodology em-
bodies the evolutionary dynamics of the language game paradigm
[30, 40, 41, 48] and integrates an innovative way in which agents
represent, invent, adopt and align concept representations.

Along with a formal definition of the methodology, we have
presented a range of experiments that serve as its initial valida-
tion and which demonstrate the desirable properties of the emer-
gent artificial natural languages. As such, we have first applied the
methodology to three datasets that contain very different types of
data, ranging from visual scenes over physicochemical analyses to
principal components extracted from financial transaction records.
Yielding a communicatively effective, coherent and transparent
linguistic convention in all three cases, the experiment shows that
the effectiveness of the methodology is not limited to a particular
domain or data type. Then, we reported on two experiments that
confirm that the methodology is capable of compositional generali-
sation and that it remains effective when applied to heteromorphic
populations. The fourth and fifth experiments demonstrate the
robustness of the methodology against sensor defects and noisy
observations, including those resulting from a lack of calibration.
The final experiment validates the adequacy of the methodology for
continual learning, focussing in particular on its resilience against
catastrophic forgetting.

The research reported on in this paper constitutes a novel contri-
bution to the state of the art as it lifts three consequential limitations
that were never successfully overcome together in prior work. The
first limitation concerns the emergent nature of the conceptual dis-
tinctions. Most prior approaches learn to ground a predefined set
of concepts [31, 39, 51]. These concepts are symbolically annotated
in training data and correspond to distinctions that occur in an
existing natural language, typically English. As these concepts have
emerged and evolved to fit the communicative needs and physical
endowment of a community of human language users, they do not
necessarily fit well the sensors and communicative tasks of artifi-
cial agents [48]. The second limitation concerns the circumstances
under which the languages emerge and evolve. These are often too
far removed from those under which human languages emerge and
evolve to bring about evolutionary processes that yield emergent
languages with the same desirable properties. In particular, pop-
ulations sometimes consist of two agents only [5, 18, 32], agents
can either speak or listen, but not both, [7, 8, 24, 29], or learning
is not decentralised [15, 22]. Finally, prior approaches that are not
subject to the first two limitations are limited in their applicability,
as they have not been generalised beyond the emergence of naming



conventions [26, 44, 45], to continuous feature spaces [53, 54], or to
arbitrary combinations of feature channels [2, 3, 37, 38, 42, 49, 50].
By lifting these three limitations at the same time, the methodol-
ogy introduced in this paper provides a model of how human-like
linguistic conventions can emerge and evolve in populations of
autonomous agents, which is, importantly, directly applicable to
any dataset that situates entities in a continuous feature space.

REFERENCES
[1] Clay Beckner, Richard Blythe, Joan Bybee, Morten H. Christiansen, William

Croft, Nick C. Ellis, John Holland, Jinyun Ke, Diane Larsen-Freeman, and Tom
Schoenemann. 2009. Language is a complex adaptive system: Position paper.
Language learning 59 (2009), 1–26. https://doi.org/10.1111/j.1467-9922.2009.
00533.x

[2] Tony Belpaeme and Joris Bleys. 2005. Explaining universal color categories
through a constrained acquisition process. Adaptive Behavior 13, 4 (2005), 293–
310.

[3] Joris Bleys. 2016. Language strategies for the domain of colour. Language Science
Press, Berlin, Germany.

[4] Ben Bogin, Mor Geva, and Jonathan Berant. 2018. Emergence of communication
in an interactive world with consistent speakers. In Emergent Communication
Workshop: NeurIPS 2018.

[5] Diane Bouchacourt andMarco Baroni. 2018. How agents see things: On visual rep-
resentations in an emergent language game. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (Eds.). Association for Computational
Linguistics, 981–985. https://doi.org/10.18653/v1/D18-1119

[6] Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Z. Leibo, Karl Tuyls, and Stephen
Clark. 2018. Emergent communication through negotiation. In 6th International
Conference on Learning Representations (ICLR 2018). 1–15.

[7] Rahma Chaabouni, Eugene Kharitonov, Emmanuel Dupoux, and Marco Ba-
roni. 2021. Communicating artificial neural networks develop efficient color-
naming systems. Proceedings of the National Academy of Sciences 118, 12 (2021),
e2016569118. https://doi.org/10.1073/pnas.2016569118

[8] Rahma Chaabouni, Florian Strub, Florent Altché, Eugene Tarassov, Corentin
Tallec, Elnaz Davoodi, Kory Wallace Mathewson, Olivier Tieleman, Angeliki
Lazaridou, and Bilal Piot. 2022. Emergent communication at scale. In 10th Inter-
national Conference on Learning Representations (ICLR 2022). 1–30.

[9] Paulo Cortez, Antonio Cerdeira, Fernando Almeida, Telmo Matos, and José Reis.
2009. Modelingwine preferences by datamining from physicochemical properties.
Decision Support Systems 47, 4 (2009), 547–553. https://doi.org/10.1016/j.dss.2009.
05.016

[10] Andrea Dal Pozzolo, Olivier Caelen, Yann-Aël Le Borgne, Serge Waterschoot,
and Gianluca Bontempi. 2014. Learned lessons in credit card fraud detection
from a practitioner perspective. Expert Systems with Applications 41, 10 (2014),
4915–4928. https://doi.org/10.1016/j.eswa.2014.02.026

[11] Charles R. Darwin. 1871. The descent of man, and selection in relation to sex (1st
ed.). Vol. 1. John Murray, London, United Kingdom.

[12] Abhishek Das, Satwik Kottur, José M. F. Moura, Stefan Lee, and Dhruv Batra. 2017.
Learning cooperative visual dialog agents with deep reinforcement learning. In
2017 IEEE International Conference on Computer Vision (ICCV), Rita Cucchiara,
YasuyukiMatsushita, Nicu Sebe, and Stefano Soatto (Eds.). IEEEComputer Society,
Washington, D.C., USA, 2951–2960.

[13] Jonas Doumen, Katrien Beuls, and Paul Van Eecke. 2023. Modelling Language
Acquisition through Syntactico-Semantic Pattern Finding. In Findings of the As-
sociation for Computational Linguistics: EACL 2023, Andreas Vlachos and Isabelle
Augenstein (Eds.). Association for Computational Linguistics, 1317–1327.

[14] Gerald Echterhoff. 2013. The role of action in verbal communication and shared
reality. Behavioral and Brain Sciences 36, 4 (2013), 354–355. https://doi.org/10.
1017/S0140525X12002567

[15] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon White-
son. 2016. Learning to communicate with deep multi-agent reinforcement learn-
ing. In Advances in Neural Information Processing Systems 29 (NIPS 2016), Daniel
Lee, Masashi Sugiyama, Ulrike Von Luxburg, Isabelle Guyon, and Roman Garnett
(Eds.). Curran Associates Inc., Red Hook, NY, USA, 2137–2145.

[16] Robert M. French. 1999. Catastrophic forgetting in connectionist networks.
Trends in Cognitive Sciences 3, 4 (1999), 128–135. https://doi.org/10.1016/S1364-
6613(99)01294-2

[17] Paul Grice. 1967. Logic and Conversation. In Studies in the Way of Words, Paul
Grice (Ed.). Harvard University Press, Cambridge, MA, USA, 41–58.

[18] Serhii Havrylov and Ivan Titov. 2017. Emergence of language with multi-agent
games: Learning to communicate with sequences of symbols. In Advances in
Neural Information Processing Systems 30 (NIPS 2017), Isabelle Guyon, Ulrike Von
Luxburg, Samy Bengio, Hanna Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett (Eds.). Curran Associates Inc., Red Hook, NY, USA, 2146–2156.

[19] Ernst Hellinger. 1909. Neue Begründung der Theorie quadratischer Formen von
unendlichvielen Veränderlichen. Journal für die reine und angewandteMathematik
1909, 136 (1909), 210–271. https://doi.org/10.1515/crll.1909.136.210

[20] Francis Heylighen. 2001. The science of self-organization and adaptivity. In
Knowledge management, organizational intelligence and learning, and complex-
ity. The encyclopedia of life support systems, Lowell Douglas Kiel (Ed.). EOLSS
Publishers, Oxford, United Kingdom, 253–280.

[21] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C.
Lawrence Zitnick, and Ross Girshick. 2017. CLEVR: A Diagnostic Dataset for
Compositional Language and Elementary Visual Reasoning. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society,
Washington, D.C., USA, 2901–2910.

[22] Jooyeon Kim and Alice Oh. 2021. Emergent Communication under Varying
Sizes and Connectivities. In Advances in Neural Information Processing Systems 34
(NeurIPS 2021), Marc’Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S.
Liang, and Jennifer W. Vaughan (Eds.). Curran Associates Inc., Red Hook, NY,
USA, 17579–17591.

[23] Najoung Kim and Tal Linzen. 2020. COGS: A Compositional Generalization
Challenge Based on Semantic Interpretation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Bonnie Webber,
Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational
Linguistics, 9087–9105. https://doi.org/10.18653/v1/2020.emnlp-main.731

[24] Satwik Kottur, José Moura, Stefan Lee, and Dhruv Batra. 2017. Natural Lan-
guage Does Not Emerge ‘Naturally’ in Multi-Agent Dialog. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, Martha
Palmer, Rebecca Hwa, and Sebastian Riedel (Eds.). Association for Computational
Linguistics, 2962–2967. https://doi.org/10.18653/v1/D17-1321

[25] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. 2017. Multi-
agent cooperation and the emergence of (natural) language. In 5th International
Conference on Learning Representations (ICLR 2017). 1–11.

[26] Martin Loetzsch. 2015. Lexicon formation in autonomous robots. Ph.D. Dissertation.
Humboldt-Universität zu Berlin, Berlin, Germany.

[27] John Maynard Smith and Eörs Szathmáry. 1999. The origins of life: From the
birth of life to the origin of language. Oxford University Press, Oxford, United
Kingdom.

[28] Michael McCloskey and Neal J. Cohen. 1989. Catastrophic Interference in
Connectionist Networks: The Sequential Learning Problem. In Psychology of
Learning and Motivation 24, Gordon H. Bower (Ed.). Academic Press, 109–165.
https://doi.org/10.1016/S0079-7421(08)60536-8

[29] Igor Mordatch and Pieter Abbeel. 2018. Emergence of grounded compositional
language in multi-agent populations. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, Sheila McIlraith and Kilian Q. Weinberger
(Eds.). AAAI Press, Washington, D.C., USA, 1495–1502.

[30] Jens Nevens, Paul Van Eecke, and Katrien Beuls. 2019. A Practical Guide to
Studying Emergent Communication through Grounded Language Games. In
AISB 2019 Symposium on Language Learning for Artificial Agents. AISB, 1–8.

[31] Jens Nevens, Paul Van Eecke, and Katrien Beuls. 2020. From continuous ob-
servations to symbolic concepts: A discrimination-based strategy for grounded
concept learning. Frontiers in Robotics and AI 7, 84 (2020). https://doi.org/10.
3389/frobt.2020.00084

[32] Michael Noukhovitch, Travis LaCroix, Angeliki Lazaridou, and Aaron Courville.
2021. Emergent Communication under Competition. In Proceedings of the 20th
International Conference on Autonomous Agents and Multi-Agent Systems. 974–
982.

[33] Pierre-Yves Oudeyer and Frédéric Kaplan. 2007. Language evolution as a Dar-
winian process: Computational studies. Cognitive Processing 8, 1 (2007), 21–35.
https://doi.org/10.1007/s10339-006-0158-3

[34] Rolf Pfeifer, Max Lungarella, and Fumiya Iida. 2007. Self-organization, Embodi-
ment, and Biologically Inspired Robotics. Science 318, 5853 (2007), 1088–1093.
https://doi.org/10.1126/science.1145803

[35] Cinjon Resnick, Ilya Kulikov, Kyunghyun Cho, and Jason Weston. 2017. Ve-
hicle Communication Strategies for Simulated Highway Driving. In Emergent
Communication Workshop: NeurIPS 2017.

[36] August Schleicher. 1869. Darwinism tested by the science of language. English
translation of Schleicher 1863, translated by Alex V. W. Bikkers. John Camden
Hotten, London, United Kingdom.

[37] Michael Spranger. 2013. Grounded lexicon acquisition - Case studies in spatial
language. In Proceedings of the 2013 IEEE Third Joint International Conference on
Development and Learning and Epigenetic Robotics (ICDL). IEEE, 1–6.

[38] Michael Spranger. 2016. The evolution of grounded spatial language. Language
Science Press, Berlin, Germany. https://doi.org/10.17169/langsci.b53.183

[39] Michael Spranger and Katrien Beuls. 2016. Referential uncertainty and word
learning in high-dimensional, continuous meaning spaces. In Proceedings of
the 2016 Joint IEEE International Conference on Development and Learning and
Epigenetic Robotics (ICDL-EpiRob). IEEE, 95–100.

[40] Luc Steels. 1995. A self-organizing spatial vocabulary. Artificial Life 2, 3 (1995),
319–332. https://doi.org/10.1162/artl.1995.2.3.319

https://doi.org/10.1111/j.1467-9922.2009.00533.x
https://doi.org/10.1111/j.1467-9922.2009.00533.x
https://doi.org/10.18653/v1/D18-1119
https://doi.org/10.1073/pnas.2016569118
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1016/j.eswa.2014.02.026
https://doi.org/10.1017/S0140525X12002567
https://doi.org/10.1017/S0140525X12002567
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/D17-1321
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.3389/frobt.2020.00084
https://doi.org/10.3389/frobt.2020.00084
https://doi.org/10.1007/s10339-006-0158-3
https://doi.org/10.1126/science.1145803
https://doi.org/10.17169/langsci.b53.183
https://doi.org/10.1162/artl.1995.2.3.319


[41] Luc Steels. 2003. The evolution of communication systems by adaptive agents. In
Symposium on Adaptive Agents and Multi-Agent Systems, Eduardo Alonso, Daniel
Kudenko, and Dimitar Kazakov (Eds.). 125–140. https://doi.org/10.1007/3-540-
44826-8_8

[42] Luc Steels. 2015. The Talking Heads experiment: Origins of words and meanings.
Language Science Press, Berlin, Germany.

[43] Luc Steels and Tony Belpaeme. 2005. Coordinating perceptually grounded cate-
gories through language: A case study for colour. Behavioral and Brain Sciences
28, 4 (2005), 469–489. https://doi.org/10.1017/S0140525X05000087

[44] Luc Steels and Martin Loetzsch. 2012. The grounded naming game. In Experi-
ments in Cultural Language Evolution, Luc Steels (Ed.). Vol. 3. John Benjamins,
Amsterdam, Netherlands, 41–59. https://doi.org/10.1075/ais.3.04ste

[45] Luc Steels, Martin Loetzsch, and Michael Spranger. 2016. A boy named Sue: The
semiotic dynamics of naming and identity. Belgian Journal of Linguistics 30, 1
(2016), 147–169. https://doi.org/10.1075/bjl.30.07ste

[46] Luc Steels and Eörs Szathmáry. 2018. The evolutionary dynamics of language.
Biosystems 164 (2018), 128–137. https://doi.org/10.1016/j.biosystems.2017.11.003

[47] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning multia-
gent communication with backpropagation. In Advances in Neural Information
Processing Systems 29 (NIPS 2016), Daniel Lee, Masashi Sugiyama, Ulrike Von
Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). Curran Associates Inc., Red
Hook, NY, USA, 2244–2252.

[48] Paul Van Eecke, Katrien Beuls, Jérôme Botoko Ekila, and Roxana Rădulescu.
2022. Language games meet multi-agent reinforcement learning: A case study
for the naming game. Journal of Language Evolution 7, 2 (2022), 213–223. https:
//doi.org/10.1093/jole/lzad001

[49] Paul Vogt. 2005. The emergence of compositional structures in perceptually
grounded language games. Artificial intelligence 167, 1–2 (2005), 206–242. https:
//doi.org/10.1016/j.artint.2005.04.010

[50] Paul Vogt. 2015. How mobile robots can self-organise a vocabulary. Language
Science Press, Berlin, Germany. https://doi.org/10.17169/langsci.b50.113

[51] Sida I. Wang, Percy Liang, and Christopher D. Manning. 2016. Learning Language
Games through Interaction. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Katrin Erk
and Noah A. Smith (Eds.). Association for Computational Linguistics, 2368–2378.
https://doi.org/10.18653/v1/P16-1224

[52] Barry Payne Welford. 1962. Note on a method for calculating corrected sums of
squares and products. Technometrics 4, 3 (1962), 419–420.

[53] Pieter Wellens. 2012. Adaptive Strategies in the Emergence of Lexical Systems.
Ph.D. Dissertation. Vrije Universiteit Brussel, Brussels: VUB Press.

[54] Pieter Wellens, Martin Loetzsch, and Luc Steels. 2008. Flexible word meaning in
embodied agents. Connection Science 20, 2–3 (2008), 173–191. https://doi.org/10.
1080/09540090802091966

https://doi.org/10.1007/3-540-44826-8_8
https://doi.org/10.1007/3-540-44826-8_8
https://doi.org/10.1017/S0140525X05000087
https://doi.org/10.1075/ais.3.04ste
https://doi.org/10.1075/bjl.30.07ste
https://doi.org/10.1016/j.biosystems.2017.11.003
https://doi.org/10.1093/jole/lzad001
https://doi.org/10.1093/jole/lzad001
https://doi.org/10.1016/j.artint.2005.04.010
https://doi.org/10.1016/j.artint.2005.04.010
https://doi.org/10.17169/langsci.b50.113
https://doi.org/10.18653/v1/P16-1224
https://doi.org/10.1080/09540090802091966
https://doi.org/10.1080/09540090802091966

	Abstract
	1 Introduction
	2 Methodology
	3 Experimental validation
	3.1 Emergence of a communicatively effective, coherent and interpretable convention
	3.2 Compositional generalisability of the emergent concepts
	3.3 Applicability to heteromorphic populations
	3.4 Robustness against sensor defects
	3.5 Robustness against differences in perception
	3.6 Adequacy for continual learning

	4 Discussion and Conclusion
	References

