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ABSTRACT
Exploration in reinforcement learning remains a difficult challenge.
In order to drive exploration, ensembles with randomized prior
functions have recently been popularized to quantify uncertainty
in the value model. However these ensembles have no theoreti-
cal motivation why they should resemble the actual posterior. In
this work, we view training ensembles from the perspective of Se-
quential Monte Carlo, a Monte Carlo method that approximates a
sequence of distributions with a set of particles, and propose an al-
gorithm that exploits both the practical flexibility of ensembles and
theory of the Bayesian paradigm. We incorporate this method into
a standard DQN agent and experimentally show qualitatively good
uncertainty quantification and improved exploration capabilities
over a regular ensemble.
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1 INTRODUCTION
Reinforcement learning (RL) algorithms are still notoriously sam-
ple inefficient. One pressing reason is the difficulty of exploring
an environment efficiently while assuming little prior knowledge
[34]. A promising approach that is currently studied is to quantify
uncertainty in the value models learned by the agent, and then
either provide intrinsic reward, be optimistic, or use Thompson
sampling to explore [1–4, 8, 15, 16, 22, 28, 29, 31]. However, quan-
tifying uncertainty for deep neural networks is in itself a difficult
task [19, 25].

Ensembles of neural networks have been shown to provide bet-
ter predictive accuracy over a single model in supervised learning
tasks [12, 21], as well as suitable methods for uncertainty quantifi-
cation for exploration in reinforcement learning [14, 28, 29]. While
ensembles with independent models of identical architecture tend
to collapse to the same predictive model [18], there are several
techniques developed to prevent this, such as adversarial learning
[21], bootstrapping the data [29], and adding additive priors [28].
Further, some techniques such as Stein Variational Gradient De-
scent [9, 23] alleviate this issue by interpreting the ensemble as an
approximation to the Bayesian posterior and training it as such. The
method that we propose falls into this last category and aims to be
closer to the posterior for more accurate uncertainty quantification,
while retaining the flexibility of ensembles.

Bayesian neural networks can have desirable properties if the
posterior can be inferred accurately. They have in theory optimal
predictive accuracy given the correct likelihood and prior and also
provide accurate uncertainty quantification. Unfortunately, exactly
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inferring the posterior is intractable already for some simple statis-
tical models, and accurately approximating this posterior is very
difficult for neural networks. Typically, posterior approximation
methods fall into one of two categories: Markov Chain Monte Carlo
(MCMC), and Variational Inference.

Recently both types of methods have been altered specifically for
application to neural networks. Variational Inference can be scaled
to large networks by picking simple model classes to tractably opti-
mize within the class and has been applied to RL in the context of
uncertainty quantification and exploration [15, 16, 32]. Due to the
complex nature of Neural Networks however, it is unclear how the
model class biases uncertainty quantification. On the other hand,
MCMC is in theory unbiased and also shows strong results in large
networks in practice [7, 17, 33]. However, for complex multimodal
distributions, MCMC methods can struggle to find every mode [11].
This is an important drawback in deep learning, where the pos-
terior distribution is likely very ill behaved, and especially in RL
where under-approximation of the posterior complexity might lead
to underestimating the uncertainty and therefore failure of explo-
ration. Sequential Monte Carlo (SMC), which uses a set of particles
to approximate the posterior, can be a remedy to these issues in
non-deep learning applications [11].

In this work, we forego Variational Inference to avoid a decision
in model class, and instead alleviate the issues in MCMC by using
SMC. Noting the success of ensembles in deep learning, we unify
ensembles and MCMC methods by using SMC algorithms to train
an ensemble in a Bayesianmanner, to benefit from both the practical
effectiveness of ensembles and theoretical foundations of MCMC.
Specifically, our contributions are as follows:

(1) We adapt existing SMC algorithms to a minibatch setting,
and show empirically that they are feasible methods to train
ensembles so that they serve as proper approximations to
the Bayes posterior.

(2) As our main contribution, we introduce Sequential Monte
Carlo DQN (SMC-DQN)1, an RL algorithm which uses SMC
to track a posterior over the Q-values in a theoretically sound
manner, by sequentially updating its models with incoming
data and correctly conditioning on target parameters. The
agent uses Thompson sampling from the posterior distribu-
tion to drive exploration.

(3) We experimentally test our agent’s exploration capabilities
on several environments, observing significantly stronger
performance over regular ensembles and results that are
competitive with a strong baseline.

1Code is available at https://github.com/Pascal314/BayesianEnsemblesAAMAS

https://ala2024.github.io/
https://github.com/Pascal314/BayesianEnsemblesAAMAS


ALA ’24, May 6-7, 2024, Auckland, New Zealand, https://ala2024.github.io/ Pascal R. van der Vaart, Neil Yorke-Smith, and Matthijs T. J. Spaan

2 BACKGROUND
In this section we introduce the necessary background for our
contribution.

2.1 Markov Decision Processes
A Markov Decision Process is a tuple (S,A,𝑇 , 𝑅,𝛾) of a state
space S, action space A, transition function 𝑇 : S × A → Δ(S),
reward function 𝑅 : S × A → R and discount factor 0 ≤ 𝛾 < 1. At
each time step 𝑡 , an agent observes the current state 𝑠𝑡 , chooses
an action 𝑎𝑡 ∼ 𝜋 (𝑠𝑡 ) according to its policy 𝜋 : S → Δ(A), and
receives reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 ). The goal of reinforcement learning is
to find a policy 𝜋 that maximizes the discounted cumulative reward
E𝑇,𝜋

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡
]
. Of central importance is the Q-function

𝑄𝜋 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + E𝑇,𝜋

[ ∞∑︁
𝑡=1

𝛾𝑡𝑟𝑡 | 𝑠0 = 𝑠, 𝑎0 = 𝑎

]
,

denoting the expected discounted future reward if the agent exe-
cutes action 𝑎 in state 𝑠 and then follows the policy 𝜋 .

Since the transition function 𝑇 and reward function 𝑅 are as-
sumed to be unknown to the agent, computing a strong policy
requires exploration of the environment to learn which actions
result in optimal return.

2.2 Bootstrapped DQN
A common strategy to find an optimal policy is Deep Q-learning
(DQN) [26], where a parameterized neural network 𝑄𝜃 is trained
to minimize the temporal difference error

argmin
𝜃

[
𝑄𝜃 (𝑠, 𝑎) − 𝑟 − 𝛾 max

𝑎′
𝑄𝜃 ′ (𝑠′, 𝑎′)

]2
, (1)

with (𝑠, 𝑎, 𝑟, 𝑠′) sampled from the environment or a replay buffer,
and 𝜃 ′ ← 𝜃 is periodically updated for stability. The corresponding
policy picks argmax𝑎 𝑄𝜃 (𝑠, 𝑎) in every state. The agent can pick a
random action instead with probability 𝜖 , to perform exploratory
actions. To improve exploration, the BootDQN algorithm [29] lever-
ages the uncertainty estimation abilities of ensembles. By learning
an ensemble of 𝑄-networks

𝑄𝜃1 (𝑠, 𝑎), . . . , 𝑄𝜃𝑛 (𝑠, 𝑎)
the agent achieves deep exploration through Thompson sampling,
sampling uniformly 𝑖 ∈ {1, . . . , 𝑛} and acting greedily with respect
to the network 𝑄𝜃𝑖 for a full episode by picking argmax𝑎 𝑄𝜃𝑖 (𝑠, 𝑎)
in every state 𝑠 . To update its predictions, each network 𝑄𝜃𝑖 is
equipped with its own target network 𝑄𝜃 ′

𝑖
, and gets updated with

its own targets:

𝜃𝑖 ← 𝜃𝑖 − ∇𝜃𝑖
[
𝑄𝜃𝑖 (𝑠, 𝑎) − 𝑟 −max

𝑎′
𝑄𝜃 ′

𝑖
(𝑠′, 𝑎′)

]2
, (2)

where (𝑠, 𝑎, 𝑟, 𝑠′) are transitions sampled uniformly from a replay
buffer.

Crucially, the ensemble 𝑄𝜃1 (𝑠, 𝑎), . . . , 𝑄𝜃𝑛 (𝑠, 𝑎) has to stay di-
verse in under-explored states in order to keep exploration going.
This can be achieved by bootstrapping the data for each ensemble
member, or by using randomized prior functions. Randomized prior
functions have been shown to be effective at keeping ensemble
diversity [28].

A randomized prior function is a fixed function 𝑄𝜗𝑖 (𝑠, 𝑎) that
is sampled independently for each ensemble member 𝑄𝜃𝑖 (𝑠, 𝑎), at
the start of training. It remains unmodified during training and is
added to the model outputs:

(𝑄𝜃𝑖 +𝑄𝜗𝑖 ) (𝑠, 𝑎) = 𝑄𝜃𝑖 (𝑠, 𝑎) +𝑄𝜗𝑖 (𝑠, 𝑎).
During action selection, the 𝑄-values of ensemble member 𝑖 are
given by (𝑄𝜃𝑖 +𝑄𝜗𝑖 ) (𝑠, 𝑎), and the BootDQN update (2) is modified
to the following:

𝜃𝑖 ← 𝜃𝑖−

∇𝜃𝑖
[
(𝑄𝜃𝑖 +𝑄𝜗𝑖 ) (𝑠, 𝑎) − 𝑟 −max

𝑎′
(𝑄𝜃 ′

𝑖
+𝑄𝜗𝑖 ) (𝑠

′, 𝑎′)
]2

.

The fact that each ensemble member has a unique prior function
causes unique generalization behaviour on unobserved data. This
keeps the ensemble outputs diverse in under-explored states.

However, randomized prior functions lack theoretical motiva-
tion when considered as Bayesian priors for neural networks. In
problems with well-defined likelihoods and priors, the Bayesian
posterior can therefore be expected to outperform methods that
rely on randomized prior functions.

2.3 Bayesian Neural networks
A Bayesian Neural Network (BNN) is any neural network 𝑓𝜃 pa-
rameterized by 𝜃 ∈ Θ, with some prior distribution 𝑝 (𝜃 ) over Θ.
Given training data (𝑥1, . . . , 𝑥𝑛) and labels (𝑦1, . . . , 𝑦𝑛) i.i.d. from
some likelihood L(𝑦 |𝑓𝜃 (𝑥)), the goal is to compute or sample from
the posterior distribution over the parameter 𝜃 :

𝑝 (𝜃 |D) = 𝑝 (D|𝜃 )𝑝 (𝜃 )∫
𝑝 (D|𝜃 )𝑝 (𝜃 )𝑑𝜃

=

∏𝑛
𝑖=1 L(𝑦𝑖 |𝑓𝜃 (𝑥𝑖 ))𝑝 (𝜃 )∫ ∏𝑛
𝑖=1 L(𝑦𝑖 |𝑓𝜃 (𝑥𝑖 ))𝑝 (𝜃 )𝑑𝜃

.

(3)

Unfortunately, especially in the case of large neural networks,
the posterior is intractable to compute or sample from exactly.
Therefore it is necessary to resort to approximation methods such
as variational inference or MCMC.

2.4 Sequential Monte Carlo
Sequential Monte Carlo algorithms model a sequence of distribu-
tions 𝑝0 (𝜃 ), . . . , 𝑝𝑚 (𝜃 ). An initial state of particles is drawn from
𝑝0, and by repeatedly applying importance sampling, an MCMC
algorithm and resampling steps, the initial samples are transformed
to be a sample of 𝑝𝑚 (𝜃 ). A basic outline is given in Algorithm 1.
Under certain conditions, notably that sample distributions have
to be invariant under the MCMC steps, this Monte Carlo scheme
converges to the correct target [11].

Leveraging this fact, we can set

𝑝𝑚 (𝜃 ) = 𝑝 (𝜃 |D) ∝ 𝑝 (𝜃 )𝑝 (D|𝜃 ), (4)

pick a sequence of temperatures

0 = 𝜆0 < 𝜆1 < · · · < 𝜆𝑚 = 1,

and use SMC to sample from 𝑝0 (𝜃 ), . . . , 𝑝𝑚 (𝜃 ), where the distribu-
tions are given by

𝑝𝑡 (𝜃 ) ∝ 𝑝 (D|𝜃 )𝜆𝑡 𝑝 (𝜃 ) . (5)

https://ala2024.github.io/
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Figure 1: The 25th-75th and 5th-95th quantiles of the predictive posterior as predicted by SMC and an ensemble with randomized
prior functions in a supervised learning setting, compared to the gold standard Hamiltonian Monte Carlo without noise.
Sequential Monte Carlo more closely resembles the posterior distribution as approximated by Hamiltonian MC.

Algorithm 1: Base Sequential Monte Carlo
Input: sequence of target distributions 𝑝0 (𝜃 ), . . . , 𝑝𝑚 (𝜃 )

and MCMC kernels 𝑃1, . . . 𝑃𝑚
Result: a sample 𝜃1, . . . , 𝜃𝑛 ∼ 𝑝𝑚 (𝜃 )
𝜃1, . . . , 𝜃𝑛 ∼ 𝑝0
𝑤1, . . . ,𝑤𝑛 ← 1
for 𝑡 = 1, . . . ,𝑚 do

𝜃1, . . . , 𝜃𝑛 ∼ resample(𝜃1, . . . , 𝜃𝑛 |𝑤1, . . . ,𝑤𝑛)
for 𝑗 = 1, . . . 𝑛 do

𝑤 𝑗 ←
𝑝𝑡 (𝜃 𝑗 )
𝑝𝑡−1 (𝜃 𝑗 )

end
for 𝑗 = 1, . . . 𝑛 do

𝜃 𝑗 ← 𝑃𝑡 (𝜃 𝑗 )
end

end

Equation 5 effectively interpolates between the prior and the
posterior. Setting the temperature sequence correctly is important,
because a too coarse interpolation can cause the importance sam-
pling weights to be unstable and a too fine interpolation wastes
computation. Fortunately, automatic on-the-fly tuning methods ex-
ist that choose the next temperature based on the effective sample
size of the current sample [6, 10].

3 SEQUENTIAL MONTE CARLO FOR BNNS
Having introduced the necessary background, to prepare for our
main contribution, we next analyze SMC in the context of Bayesian
Neural Networks.

Applying SMC to model the posterior of a Bayesian Neural Net-
work is in practice similar to an ensemble. The particles 𝜃1, . . . , 𝜃𝑛
are individual models, and equipped with importance sampling
weights𝑤1, . . . ,𝑤𝑛 model a theoretically unbiased approximation
of the predictive posterior distribution.

The model is initialized by sampling initial parameters 𝜃1, . . . , 𝜃𝑛
from the prior 𝑝 (𝜃 ), and trained by running SMC with target distri-
butions

(
𝑝 (D|𝜃 )𝜆𝑡 𝑝 (𝜃 )

)
𝑡≥0

. Unfortunately, typically in deep learn-
ing the data set D is so large that mini-batches are required to
tractably compute the likelihood and gradients. This poses two
problems:

(1) The reweighting step is now noisy, which lowers the quality
of importance sampling.

(2) The MCMC step, which typically is gradient based, is now
noisy. This means we may have to rely on MCMC meth-
ods that only approximately leave the target distribution
invariant.

However, these problems can largely be alleviated, as the theo-
retical results by Llorente et al. [24] show that noisy importance
sampling, which is central to the SMC algorithm, has higher vari-
ance but remains unbiased. Furthermore, Wenzel et al. [33] and
Garriga-Alonso and Fortuin [17] show that accurate noisy MCMC
kernels that leave the target distribution (approximately) invari-
ant do exist, so we can use these kernels specifically crafted for
mini-batch noise in our SMC algoritm.

Specifically, in our experiments we estimate the reweighting
steps by sampling a single batch independently for every particle
every iteration. As MCMC kernel we use the Symplectic Euler
Langevin scheme with hyper-parameters as suggested by Wenzel
et al. [33]. At each iteration 𝑡 , the temperature in the next step
𝜆𝑡+1 = 𝜆𝑡 + 𝛿 is picked by keeping the effective sample size (ESS) at
a desired level 𝑑 :

max
𝛿

𝛿, such that: 𝛿 < 1 − 𝜆𝑡 , and

ESS =

(∑𝑛
𝑗=1𝑤 𝑗

)2∑𝑛
𝑗=1𝑤

2
𝑗

=

(∑𝑛
𝑗=1 𝑝 (D|𝜃 𝑗 )𝛿

)2∑𝑛
𝑗=1 𝑝 (D|𝜃 𝑗 )2𝛿

> 𝑑.

(6)

Our initial experimental findings in a supervised learning setting,
shown in Figure 1, show a comparison of the predictive posteriors
approximated by noise-free Hamiltonian Monte Carlo, Mini-batch
Sequential Monte Carlo, and an ensemble with randomized prior
functions. Even with mini-batches, SMC with noisy likelihoods

https://ala2024.github.io/
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Algorithm 2: Sequential Monte Carlo for BNNs
Input: Prior 𝑝0 (𝜃 ) and target 𝑝0 (𝜃 )𝑝 (D|𝜃 ), MCMC

algorithm
Result: A sample 𝜃1, . . . , 𝜃𝑛 ∼ 𝑝0 (𝜃 )𝑝 (𝜃 |D)
𝜃1, . . . , 𝜃𝑛 ∼ 𝑝0
𝑤1, . . . ,𝑤𝑛 ← 1
𝑡 ← 0
𝜆0 ← 0
while 𝜆𝑡 < 1 do

Pick 𝜆𝑡 > 𝜆𝑡−1 (eq. 6)
log𝑝𝑡 (𝜃 ) ← log𝑝0 (𝜃 ) + 𝜆𝑡 log𝑝 (D|𝜃 )
𝜃1, . . . , 𝜃𝑛 ∼ resample(𝜃1, . . . , 𝜃𝑛 |𝑤1, . . . ,𝑤𝑛)
for 𝑗 = 1, . . . 𝑛 do

log𝑤 𝑗 ← (𝜆𝑡 − 𝜆𝑡−1) log𝑝 (𝜃 𝑗 |D)
end
𝑤1, . . . ,𝑤𝑛 = normalize(𝑤1, . . . ,𝑤𝑛)
for 𝑗 = 1, . . . 𝑛 do

𝜃 𝑗 ← MCMC(𝜃 𝑗 , log 𝑝𝑡 (𝜃 ))
end
𝑡 ← 𝑡 + 1

end

and gradients results in performance on par with the gold stan-
dard noise-free Hamiltonian Monte Carlo [27]. However, small
mini-batches may require a finer grained interpolation, since the
temperature schedule depends on maintaining a high enough ESS,
which is known to be lower when using noisy reweighting [24].

4 SEQUENTIAL MONTE CARLO DQN
(SMC-DQN)

With the goal of improving exploration, we construct an agent that
can accurately quantify uncertainty in its 𝑄-values by approximat-
ing the posterior distribution over its parameters given the transi-
tions that have previously been observed. Specifically, we extend a
standard DQN agent by replacing its point-wise estimator 𝑄𝜃 (𝑠, 𝑎)
with an ensemble of neural networks 𝑄𝜃1 (𝑠, 𝑎), . . . , 𝑄𝜃𝑛 (𝑠, 𝑎) and
weights𝑤1, . . .𝑤𝑛 to maintain an approximation of the posterior
𝑝 (𝜃 |D, 𝜽 ′), conditioned on the current replay buffer

D = ((𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1))𝑡=1...𝑁
and current target parameters

𝜽 ′ = (𝜃 ′1, . . . , 𝜃
′
𝑛).

In line with the work by Schmitt et al. [32], a normal distribution

𝑄𝜃 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎) − 𝛾 max
𝑎′

𝑄𝜃 ′ (𝑠′, 𝑎′) ∼ N (0, 𝜎)

is used as a probabilistic interpretation of the squared temporal
difference error, and to represent the uncertainty in the targets we
define the likelihood to be a mixture distribution

logL(𝑠, 𝑎, 𝑟, 𝑠′ |𝜃,𝜽 ′) =

log
𝑛∑︁
𝑖=1

1
𝑛
exp

©«
1

2𝜎2
[𝑄𝜃 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎)−

𝛾 max
𝑎′

𝑄𝜃 ′
𝑖
(𝑠′, 𝑎′)]2

ª®®¬ ,
(7)

Algorithm 3: SMC-DQN
Input:MDP, batch size 𝐵, ensemble size 𝑛
Result: Posterior over 𝑄𝜃 (𝑠, 𝑎)
𝜃1, . . . , 𝜃𝑛 ∼ 𝑝 (𝜃 )
𝑤1, . . . ,𝑤𝑛 ← 1
while training do

𝑖 ∼ uniform(1, . . . , 𝑛)
𝑠0 ∼ MDP

𝑡 ← 0
while episode not done do

𝑎𝑡 = argmax𝑎 𝑄𝜃𝑖 (𝑠𝑡 )
𝑟𝑡 , 𝑠𝑡+1 ∼ MDP(𝑠𝑡 , 𝑎𝑡 )
B = B ∪ {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}
if |B| = 𝐵 then

𝜃1, . . . , 𝜃𝑛,𝑤1, . . . ,𝑤𝑛 ←
SMC(𝑝 (𝜃 |𝜽 ′,D), 𝑝 (𝜃 |𝜽 ′,D ∪ B)) (eq. 11)
D ← D ∪ B
B ← ∅

end
if time for target update then

𝜃 ′
𝑖,new ← 𝜃𝑖

𝜃1, . . . , 𝜃𝑛,𝑤1, . . . ,𝑤𝑛 ←
SMC(𝑝 (𝜃 |𝜽 ′,D), 𝑝 (𝜃 |𝜽 ′new,D)) (eq. 12)

𝜃 ′
𝑖
← 𝜃 ′

𝑖,new

end
end

end

contrasting BootDQN which shares no target values between en-
semble members. The log posterior distribution is defined as

log𝑝 (𝜃 |𝜽 ′,D) ∝ log𝑝 (𝜃 ) + logL(D|𝜃, 𝜽 ′), (8)

where

logL(D|𝜃, 𝜽 ′) =
∑︁

(𝑠,𝑎,𝑟,𝑠′ ) ∈D
logL(𝑠, 𝑎, 𝑟, 𝑠′ |𝜃, 𝜽 ′). (9)

After collecting a new batch of trajectories

B = ((𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1))𝑡=1,...,𝐵
by acting in the environment, the posterior distribution can be
updated efficiently by noting that

log𝑝 (𝜃 |𝜽 ′,D ∪ B)
= log𝑝 (𝜃 ) + logL(D ∪ B|𝜃, 𝜽 ′)
= log𝑝 (𝜃 ) + logL(D|𝜃, 𝜽 ′) + logL(B|𝜃, 𝜽 ′)
= log𝑝 (𝜃 |𝜽 ′,D) + logL(B|𝜃, 𝜽 ′).

(10)

Therefore, since our agent is currently holding a sample of
𝑝 (𝜃 |𝜽 ′,D), the posterior can be updated by running SMC on the
sequence

𝑝 (𝜃 |𝜽 ′,D), 𝑝 (𝜃 |𝜽 ′,D)L(B|𝜃, 𝜽 ′)𝜆1 , . . . ,

𝑝 (𝜃 |𝜽 ′,D)L(B|𝜃, 𝜽 ′)𝜆𝑘 , 𝑝 (𝜃 |𝜽 ′,D)L(B|𝜃, 𝜽 ′), (11)

which interpolates between the posterior given what was already
known, and the new posterior including the new batch. This is
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equivalent to Equation 5 when taking 𝑝 (𝜃 |𝜽 ′,D) as prior and
𝑝 (B|𝜃, 𝜽 ′) as likelihood.

To evaluate Equation 11, the likelihood L(B|𝜃, 𝜽 ′) only requires
the latest batch, and can easily be computed exactly. However,
we choose to approximate 𝑝 (𝜃 |𝜽 ′,D) by sampling mini-batches
uniformly from the replay buffer, since computing it exactly would
require summing over the entire replay buffer.

Updating the target networks 𝜽 ′ changes the target distribution,
meaning that the sample

𝜃1, . . . , 𝜃𝑛, 𝑤1, . . . ,𝑤𝑛

is no longer a sample of the posterior with respect to the updated tar-
gets, i.e., 𝑝 (𝜃 |𝜽 ′new,D). Therefore, the typical target update 𝜃 ′𝑖 ← 𝜃𝑖
is now accompanied by another SMC step, which smoothly inter-
polates between the distribution conditioned on the old targets and
the distribution conditioned on the new targets via the sequence

𝑝 (𝜃 )L(D|𝜃, 𝜽 ′old)
(1−𝜆𝑡 )𝑝 (𝜃 )L(D|𝜃, 𝜽 ′new)𝜆𝑡 →

𝑝 (𝜃 )L(D|𝜃, 𝜽 ′new), (12)

as 𝜆𝑡 increases from 0 to 1. This transforms a sample of the poste-
rior with respect to the previous targets to a sample with respect
to the new targets. Intuitively speaking, this trains the main net-
works 𝜃1, . . . , 𝜃𝑛 to match the new targets, before acting in the
environment again.

Similarly to BootDQN, actions are selected by Thompson sam-
pling one model 𝜃𝑖 , and committing to this model for a full episode.
Algorithm 3 shows the general structure with both updates, where
SMC refers to Algorithm 2. The Symplectic Euler Langevin scheme
[33] is used as MCMC step. We opt not to resample in every SMC
step, in order to maintain more diversity in the ensemble. Further,
to maximize the exploration behaviour of the agent, we sample
uniformly from the particles as opposed to utilizing the weights.

While the structure is similar to a typical DQN implementation, a
major difference is that the SMC steps take significantly more time
than typical Q-value updates. For each batch from the environment,
the agent adapts its model to match the posterior given the new
replay buffer, and also after each target update the agent trains its
networks to match the posterior given the new targets. The speed
at which the agent can condition its model on the new data causes a
trade off between computation complexity and sample complexity.
In this work we are mostly concerned with sample complexity
in the exploration setting. Furthermore, there is a very clear split
between samples that are already in the data set D and samples
that have yet to be incorporated B. It is assumed that the replay
buffer D is large enough to store every experienced transition.

5 EXPERIMENTAL STUDY
So far we have introduced SMC-DQN, an agent that is architec-
turally similar to DQN with an ensemble, but employs SMC to
maintain a posterior over 𝑄-value functions. To test our agent’s
ability to explore in difficult sparse reward environments, we eval-
uate on the exploration tasks in Behaviour Suite (BSuite) [30]. We
also test on BSuite’s Mountain Car environment, which requires
further exploration after reaching the goal state to recover an opti-
mal policy, to test whether our agent still explores effectively after
finding reward.

Figure 2: Graphical representation of Deep Sea. The agent
starts in the top left state, and transitions downwards to the
left or right at every time step depending on the action taken.
The only positive reward is granted in the bottom right state

5.1 Environments
Our agents run for 10000 episodes on both Deep Sea environments,
1000 episodes on Cartpole, and 300 on Mountain Car, which, except
for in Mountain Car, is the number of episodes prescribed by BSuite.
We only run our agents for 300 episodes as opposed to BSuite’s 1000
episodes on Mountain Car because performance plateaus already
after 100 episodes.

Deep Sea. Deep Sea is a one hot encoded chain-like environment,
where the observations are a matrix of size 𝑛 × 𝑛 and there are two
discrete actions. The agent starts at the top left state, moves down
one row at every time step, and also moves left or right depending
on the action taken. A graphical view is shown in Figure 2. Only the
bottom right state results in positive reward, meaning that the agent
has to execute the correct action 𝑛 times in a row to observe any
positive reward in an episode; hence this environment is impossible
to solve with an 𝜖-greedy approach. Further, the agent receives a
small negative rewardwhenmoving to the right. In our experiments,
we use an environment of size 30×30 and report the episodic return
excluding the small negative reward, so an optimal policy receives
reward 1 in every episode. This is a difficult exploration task where
the agent can not rely on generalization. In both deep sea variants,
which action goes left or right is randomized for each state to avoid
trivial solutions.

Deep Sea Stochastic. Stochastic Deep Sea adds a (1− 1
𝑛 ) probabil-

ity that the ‘right‘ action fails and goes to the left instead. Further-
more, on the bottom left state the agent receives a stochastic reward
with mean 0. We use an environment of size 20 × 20 and in our
plots we normalize the reward an agent received by the theoretical
optimal mean return of (1 − 1

𝑛 )
𝑛 so that an optimal policy will

receive an average episodic return of 1. This environment requires
the agent’s exploration method to be able to deal with stochasticity.

Cartpole Swingup. Cartpole Swingup is a sparse reward control
task with continuous states and discrete actions, similar to the clas-
sic Cartpole environment, except that the pole starts in a downward
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Figure 3: Learning curves over the BSuite environments. The solid line is the mean of 10 seeds for the Deep Sea environments,
and 5 seeds for Cartpole Swingup and Mountain Car. The shaded area denotes the standard error of the mean. Dashed lines
show individual seeds.
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Figure 4: Learning curves on 30 × 30 deep sea for 2 ablations
compared to SMC-DQN. The solid line is themean of 10 seeds
for ‘naive target update’ and 5 seeds for ‘only MCMC’. Shaded
areas denote the standard error of the mean and dashed lines
show individual seeds.

position and the agent has to explore to find that reward is received
when the pole is upright. The agent also receives negative reward
for moving the cart, disincentivizing exploration. This is a difficult
exploration task in a continuous state space.

Mountain Car. Mountain Car is a control task with continues
states and discrete actions, where the agent has to drive an under-
powered car up a hill by building up momentum in a valley. In
BSuite’s implementation, an episode is 1000 steps and cancels early
when the agent reaches the goal. The agent receives −1 reward
at every time step, and has to learn to end the episode as fast as
possible to maximize reward. Exploring to find the goal state is not
necessarily difficult in this environment, but finding an optimal
policy that reaches the goal state quickly can be difficult.

5.2 Baselines and Hyper-parameters
Baselines. We compare against the baseline Bootstrapped DQN

agents in BSuite with andwithout randomized prior functions, since
our algorithm can be considered an extension to the Bootstrapped
DQN agent without priors, and the bootstrapped DQN agent with
priors is also similar to our method and known to be a strong
baseline in the exploration tasks that we consider.

Hyper-parameters. We test all our agents with ensembles of size
10. For SMC-DQN, we use the same hyper-parameters across each
experiment, except for Cartpole Swingup, wherewe set the standard
deviation of the likelihood to 𝜎 = 1 instead of 𝜎 = 0.1 due to the
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Figure 5: Graphical view of the standard deviation and visitation counts of the values during training on deep_sea/10. Each
pixel shows standard deviation in the maximum 𝑄-value (top row) of that state as predicted by the ensemble. The bottom row
shows the logarithmic visitation counts. In each figure, the top left state is the initial state, and the bottom right state is the
goal state. The diagonal is the only sequence of states that results in reward. States in the upper triangle are unreachable.

much larger scale of cumulative reward in Cartpole Swingup. For
our baselines, we use the hyper-parameters provided by BSuite. For
the exact hyper-parameters we refer to the Supplementary Material.

5.3 Experimental Results
Figure 3 shows the performance of the agents on each task. It can be
seen that SMC-DQN outperforms BootDQN without priors on all
our benchmarks. On Deep Sea it achieves comparable performance
to BootDQN with priors, and significantly outperforms BootDQN
with priors on Cartpole Swingup, where BootDQN at this ensemble
size fails to learn a meaningful policy even with prior functions.
When increasing the prior scale on BootDQN with priors we still
did not observe effective exploration with an ensemble of size 10 on
Cartpole Swingup. We refer to the supplementary material for these
results. Further, on Mountain Car SMC-DQN learns at the same
speed as BootDQN with priors in the beginning, but converges to a
slightly better policy.

To confirm that SMC-DQN’s uncertainty quantification is sensi-
ble, Figure 5 shows the standard deviation in Q-values as proxy to
uncertainty, and visitation counts of SMC-DQN on 30 × 30 Deep
Sea. Each square represents a state in Deep Sea, with the starting
state in the top left and the bottom right state being the only state
that results in positive reward. It is clearly visible how the uncer-
tainty in values stays high for unvisited states, meaning that the
approximated posterior distribution can correctly lead the agent
towards under-explored areas.

5.4 Ablation study
Finally, in Figure 4 we study the effect of individual components of
SMC-DQN by running two ablations.

Only MCMC. First, to test whether SMC aids in approximating
the posterior, we run an ablated agent which only uses the MCMC
kernel, the Symplectic Euler Langevin scheme, to approximate the
posterior.

The weights 𝑤1, . . . ,𝑤𝑛 are dropped, and the models are now
treated as an ensemble of independent markov chains. The SMC
step is replaced by 100 steps of the MCMC kernel, which is the
number of steps that SMC would run this kernel for on the final
target distribution. The split between the new batch and old buffer
is removed, meaning that all transitions are immediately added
to the replay buffer. The posterior density is approximated with
samples from the replay buffer:

log 𝑝 (𝜃𝑖 |𝜽 ′,D) ≈ log 𝑝 (𝜃 )

+
𝐵∑︁
𝑖=1
− 1
2𝜎2

(
𝑄𝜃 (𝑠𝑖 , 𝑎𝑖 ) − 𝑟𝑖 −′ max

𝑎′
𝛾𝑄𝜃 ′

𝑖
(𝑠′, 𝑎′)

)2
,

for each 𝑖 = 1, . . . , 𝑛. All other hyperparameters are left unchanged.
This agent fails to observe any reward, suggesting that the

MCMC kernel by itself can not keep a diverse set of models to
explore with.

Naive target update. Further, we check whether the new target
update, which is theoretically required to maintain an approxima-
tion of the posterior, also improves reward in RL experiments. We

https://ala2024.github.io/


ALA ’24, May 6-7, 2024, Auckland, New Zealand, https://ala2024.github.io/ Pascal R. van der Vaart, Neil Yorke-Smith, and Matthijs T. J. Spaan

run an ablated agent that naively updates its targets, omitting the
SMC step.

The only change made to the algorithm is to remove the SMC
step after updating the targets. This means that when the target
networks are updated, we simply set 𝜃 ′

𝑖
← 𝜃𝑖 for every 𝑖 = 1, . . . , 𝑛,

and leave the weights and parameters 𝜃1, . . . , 𝜃𝑛 unchanged until
the main update when the next batch of transitions is collected.

It can be observed that this agent can still receive reward, but
on average later and less reliably.

5.5 Discussion
Our results show a clear gap between Deep Sea and the continu-
ous environments in the performance relative to the baseline. We
hypothesize that this is due to the fact that the likelihood does
not explain the one-hot encoded environment Deep Sea very well.
On the continuous environments, agents can exploit the general-
ization capabilities of neural networks, allowing the posterior to
model sensible generalization behaviours. However, since Deep
Sea is under the hood a tabular environment, a perfect uncertainty
mechanism on Deep Sea would model every state as independent
unless they are connected, while the Bayesian posterior attempts
to generalize over all states through the dependency on 𝜃 . This
means that the posterior distribution does not necessarily provide
more accurate uncertainty quantification than an ensemble with
randomized priors of large scale.

6 RELATEDWORK
Approximating the Bayesian posterior over Q-values to quantify un-
certainty and drive exploration in Reinforcement Learning has been
previously studied by several priorworks.Monte Carlo Dropout [16]
is a Variational Inference method that uses dropout layers, which
probabilistically disables neural network connections to create
stochasticity in the outputs. The network together with the dropout
probabilities are then trained so that the outputs match the predic-
tive posterior. Furthermore, NoisyNets [15] adds stochasticity by
modelling the posterior as independent normal distributions for
each weight. Azizzadenesheli et al. [1] replaces the last layer of
a neural network with Bayesian Linear Regression, inferring the
posterior distribution only over the parameters in the last layer.
Epistemic Value Estimation [32] increases the size of the model
and uses a Laplace approximation to approximate the posterior
distribution over the full set of parameters. Due to the complex
and non-linear nature of neural networks, it is not clear in these
variational inference methods how the choice of model class for
the posterior distribution affects the approximation accuracy. Our

algorithm, on the other hand, uses MCMC methods to approximate
the posterior, which is not restricted to a model class that has to
be picked in advance. This leads to unbiased approximations in
theory, although due to practical considerations using an MCMC
method to approximate a complex posterior distribution is not a
simple task.

Langevin DQN [13] is an MCMC-based algorithm that approxi-
mates the posterior using Langevin Dynamics, which essentially
perturbs the gradients of a DQN agent with normally distributed
noise. Similarly, LMCDQN [20] uses a more intricate MCMC ker-
nel with a preconditioner to improve computational performance.
These methods are comparable to the inner MCMC kernels inside
the SMC algorithm in our agent, and could be used as drop-in re-
placements to the Symplectic Euler Langevin algorithm that we
used for its empirically established accuracy [33]. While Langevin
DQN and LMCDQN can also be used to train an ensemble of Q-
networks, SMC-DQN differs in that SMC theoretically and practi-
cally ties together the ensemble members as opposed to running
separate Markov Chains. Furthermore, we use a mixture distribu-
tion as likelihood so that the ensemble consistently models one
posterior. Further, we update our target parameters in a theoret-
ically sound manner that takes into account that the posterior
distribution is conditioned on all target parameters jointly.

7 CONCLUSION
This paper introduced the novel idea of using sequential Monte
Carlo to train an ensemble in order to approximate the Bayesian
posterior distribution. Specifically, we modified the BootDQN al-
gorithm to use Sequential Monte Carlo, thus keeping track of a
posterior over the Q-values in a theoretically sound manner.

We found that such an approach is able to maintain a diverse
set of models that can drive exploration in difficult-to-explore en-
vironments such as Deep Sea and Cartpole Swingup. Especially
in continuous state environments, the uncertainty quantification
provided by the posterior distribution leads to better exploration
compared to our baselines.

In the future, we intend to investigate the influence of the choice
of prior and likelihood, derive methods to synthesize meaning-
ful priors and likelihoods, as well as extend our method to more
intricate reinforcement-learning architectures.
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