
Population-based Evaluation in Repeated Rock-Paper-Scissors as
a Benchmark for Multiagent Reinforcement Learning

Marc Lanctot

Google DeepMind

John Schultz

Google DeepMind

Neil Burch

Sony AI

Max Olan Smith

University of Michigan

Daniel Hennes

Google DeepMind

Thomas Anthony

Google DeepMind

Julien Pérolat

Google DeepMind

ABSTRACT

Progress in fields of machine learning and adversarial planning has

benefited significantly from benchmark domains, from checkers

and the classic UCI data sets to Go and Diplomacy. In sequen-

tial decision-making, agent evaluation has largely been restricted

to few interactions against experts, with the aim to reach some

desired level of performance (e.g. beating a human professional

player). We propose a benchmark for multiagent learning based

on repeated play of the simple game Rock, Paper, Scissors along

with a population of forty-three tournament entries, some of which

are intentionally sub-optimal. We describe metrics to measure the

quality of agents based both on average returns and exploitabil-

ity. We then show that several RL, online learning, and language

model approaches can learn good counter-strategies and generalize

well, but ultimately lose to the top-performing bots, creating an

opportunity for research in multiagent learning.

KEYWORDS

reinforcement learning, population, benchmark, roshambo

1 INTRODUCTION

How should agents be evaluated when learning with other learning

agents? One metric is simply the average return over an agent’s

lifetime. Another is the agent’s robustness against a potential neme-

sis whose goals are only to minimize the agent’s return. The first

is the conventional metric used in the evaluation of reinforcement

learning (RL) agents, while the second is quite common among

game-theoretic AI techniques for competitive imperfect informa-

tion games. In our paper [1], we argue our position that neither of

these is generally sufficient in isolation: good agents should both

maximize return and be robust to adversarial attacks.

The classical method to demonstrate superior AI performance

is head-to-head matches or direct comparisons of average return,

against the strongest known agents. Thismethod has driven progress

since the beginning: from Samuel’s checkers program, to chess, Go,

poker, modern real-time games, and so on. On the other hand,

game-theoretic approaches to learning result in agents that play

approximate Nash equilibrium strategies. The extent to which cur-

rent AI systems are robust to adversarial attacks is unclear. There is

Proc. of the Adaptive and Learning Agents Workshop (ALA 2024), Avalos, Müller, Wang,
Yates (eds.), May 6-7, 2024, Online, https://ala2024.github.io/ . 2024.

evidence that even expert level AI agents can be demonstrably sus-

ceptible to adversarial behavior. While current evaluation method-

ologies over-emphasize the single metric of cumulative reward or

performance against experts, we argue that the more important

problem is the lack of benchmarks that prioritize the evaluation of

agents in a more general way, where multiple metrics could lead to

a better understanding of an agent’s capabilities.

In this two-page abstract, we summarize a recently proposed

benchmark based on the Repeated Rock, Paper, Scissors (RRPS) [1].

The benchmark contains a suite of bots of varying skill levels used

in previous competitions along with a new metric for ranking

RRPS agents that takes into account both cumulative reward and

exploitability. One-shot RPS is a well-understood two-player zero-

sum game whose game-theoretic optimal strategy is well-known,

and by construction maximizing rewards against fallible opponents

naturally leads to behavior that is potentially exploitable. For learn-

ing agents to find exploits in the opponents, they must correctly

deduce their strategies from observations. We train agents using

several modern approaches against the population and indepen-

dently trained against copies of themselves. These approaches show

promise: out-of-distribution generalization of exploitative behavior,

a clear lack of exploitable behavior, and a good balance between

these two metrics. Ultimately, none of the agents are able to outper-

form the top two participants in head-to-head matches while being

more robust to exploits, leading to a challenge and opportunity for

novel multiagent reinforcement learning research.

2 REPEATED ROCK, PAPER, SCISSORS

Anormal-form game has a set of playersN = {1, 2, · · · , 𝑛}. Amatrix

game is a two-player game with a set of actions per player A1 and

A2, a joint action set A = A1 × A2, and utility functions for each

player 𝑖 ∈ N , 𝑢𝑖 : A → ℜ. A zero-sum game is one where ∀𝑎 ∈
A,∑𝑛𝑖=1 𝑢𝑖 (𝑎). Rock, Paper, Scissors (RPS), also called RoShamBo,

is a two-player zero-sum matrix game where Rock beats Scissors,

Paper beats Rock, and Scissors beats Paper. RPS is a commonly-

used first example in the study of game theory because there is a

unique fully-mixed Nash equilibrium where players choose each

action uniformly and every pure strategy is fully exploitable. The

sequential version is repeated: there are 𝐾 = 1000 identical plays

of RPS. At state 𝑠0, agents simultaneously decide their actions and

agent 𝑖 receives intermediate reward 𝑟𝑡,𝑖 by joint action𝑎𝑡 composed

of all agents’ actions combined. Every episode has length 𝐾 and

the full (undiscounted) return is defined as 𝐺0,𝑖 =
∑𝐾−1
𝑡=0 𝑟𝑡,𝑖 . The

https://ala2024.github.io/


agent’s observation is the most recent 𝑅 actions taken by both

players where “full recall” refers to 𝑅 = 𝐾 .

2.1 Population-Based Evaluation

In early 2000s, Darse Billings ran two Repeated Rock, Paper, Scissors

(RRPS) competitions. In each competition, participants were asked

to submit a bot to play RRPS, all played within a one-second time

limit. Each program had full recall, the entire action sequence in

each episode, but nothing more that would identify the other bots.

The majority of the entries in the competition were hand-crafted

heuristic bots that were developed independently by different pro-

grammers. The resulting population consists of 43 bots: 25 entrant

bots and 18 seed bots from the first competition, whose approaches

and strategies vary significantly and strength range from simple

(and exploitable) to quite competitive (and difficult to exploit).

In RRPS, an agent 𝑖 plays with policy 𝜋𝑖 . It is important to both

maximize expected return (PopulationReturn(𝜋𝑖 )) against the
population but also to minimize exploitability. The exploitability

of an agent’s policy is the expected return that a best response

opponent would achieve against it. Computing exact exploitability

quickly becomes infeasible as 𝑅 grows, but can be approximated by

RL; in the bot population it was found to range from 4.8 to 1000,

with an average of 420.3. We introduce a more practical way to

approximate exploitability by simply enumerating all opponents 𝑃 :

WithinPopExpl(𝜋𝑖 ) = max

𝜋−𝑖 ∈𝑃
E𝑎∼(𝜋𝑖 ,𝜋−𝑖 ) [𝐺0,−𝑖 ] .

This metric across bots ranged from 1.2 to 1000, with several reach-

ing this upper-bound, 316.1 on average.While this within-population

exploitability generally under-estimates the full exploitability, it

was found to recover 50-100% of the RL-learned exploitability con-

sistently across all 43 agents (75.2% on average). One simple way

to rank agents under both metrics is to assume they both mat-

ter equally: AggregateScore(𝜋𝑖 ) = PopulationReturn(𝜋𝑖 ) −
WithinPopExpl(𝜋𝑖 ). These two metrics (population return and

within-population exploitability) capture the essence of the RPS

game in the repeated setting: ultimately the goal is to maximize

return (by predicting opponents’ choices), but agents cannot be

too exploitable in doing so because that risks giving up reward to

adaptive opponents. Hence, aggregate score acts as a summary of

how well an agent is performing on both fronts within is popula-

tion, allowing agent designers to compare a single number. Table 1

shows results for all agents (both bots and learning agents).

3 LEARNING TO PLAY REPEATED RPS

We tried several baseline agents trained in self-play: tabular Q-

learning with varying 𝑅 ∈ {1, 3, 5, 10}, DQN, A2C, and Boltzmann

DQN. Most baseline agents achieved negative population return or

low positive return and were quite exploitable. The best baseline

was Q-learning with a recall of 10 with an aggregate score of 8.2.

Contextual regret minimization (ContRM) is another tabular

method. One natural choice for making decisions in RRPS is using

an adversarial bandit algorithm. One way to frame RRPS as a con-

textual regret minimization problem is to completely separate each

possible recalled history for 𝑅 > 0 into separate contexts, with inde-

pendent regret minimizing algorithms running in each context. We

tried four different regret minimization algorithms with contexts

Bot/Agent Names Pop. Return W.P. Expl. Agg. Score

Greenberg (bot) 288.15 3.65 284.50

iocainebot (bot) 255.00 5.00 250.00

PopRL 258.00 10.98 247.02

biopic (bot) 196.36 36.66 159.70

LLM (Chinchilla 70B) 201.00 45.80 155.20

ContRM 164.77 16.27 148.51

boom (bot) 169.11 27.93 141.19

shofar (bot) 152.01 16.87 135.14

Q-learning (𝑅 = 10) −0.52 8.62 8.10

R-NaD [−10, 5] [20, 40] [−50,−25]

Table 1: RRPS agents and bots ranked by AggregateScore.

determined by recall lengths 𝑅 ∈ {1, 2, 3}. The best combination

achieved an aggregate score of 148.51.

The large language model (LLM) agent queries a 70-billion Chin-

chilla base model (without any additional fine-tuning) using a sim-

ple prompt. The query is to predict the next opponent action and

the agent plays the best response to the prediction. This agent

performed surprisingly well, performing better than 40/43 bots,

achieving an aggregate score of 155.20.

Regularized Nash Dynamics (R-NaD), the algorithm behind the

human-level Stratego agent DeepNash, achieved a slightly negative

aggregate score, which is not far away from what the uniform

random policy achieves. This algorithm achieves a strategy that is

hard to exploit but it will not exploit the other players.

Finally, we try a new population-based RL algorithm: PopRL.

PopRL is based on the IMPALA RL algorithm and uses a recurrent

neural network. PopRL adds opponent identification as an auxiliary

task. During training: at the start of each episode, an opponent is

sampled which is either one of the 43 bots, or a copy of itself. PopRL

then learns to predict which agent it is playing against in addition

to maximizing return. During evaluation, the supervised opponent

label is not present. PopRL was the best performing learned agent,

achieving an aggregate score of 247.02. However, it was unable to

beat the top two hand-crafted bots Greenberg and IocianeBot.

4 AVAILABILITY, USE, AND CHALLENGE

The environment, bot population, examples, and some learning

agents are freely available in OpenSpiel (https://github.com/google-

deepmind/open_spiel). This benchmark was used as the basis of an

assignment for a university course in artificial intelligence, with

over 170 participants. We hope to encourage studying agent capa-

bilities beyond return maximization. Due to the simplicity of RPS,

it has a low barrier to entry. On the other hand, due to the sequen-

tial nature of the repeated game and population-based evaluation,

adaptation is a key challenge. We hope it will inspire new learning

approaches that can outperform the top two bots.

REFERENCES

[1] Neil Burch Max Olan Smith Daniel Hennes Thomas Anthony Julien Perolat

Marc Lanctot, John Schultz. 2023. Population-based Evaluation in Repeated

Rock-Paper-Scissors as a Benchmark for Multiagent Reinforcement Learning.

Transactions on Machine Learning Research (2023).

https://github.com/google-deepmind/open_spiel
https://github.com/google-deepmind/open_spiel

	Abstract
	1 Introduction
	2 Repeated Rock, Paper, Scissors
	2.1 Population-Based Evaluation

	3 Learning to Play Repeated RPS
	4 Availability, Use, and Challenge
	References

