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ABSTRACT
Reinforcement Learned policies are notorious in their lack of sup-

porting proofs and guarantees. One approach to providing such

guarantees is learning a Domain of Attraction that proves stability

based on the Lyapunov Stability Criterion. We build on this ap-

proach to improve performance and ease of implementation, and

present a highly parallelizable algorithm that produces a uniform

grid that tessellates the desired region of the state space. By dis-

cretizing the state space, we take advantage of the Lipschitz nature

of the problem to prove that not only is a sample point stable, but

so is a neighborhood of it. This discretization is then combined

with existing algorithms to learn a neural network that can be used

as a Lyapunov candidate. We present our proposed algorithm, and

demonstrate it on a torque limited inverted pendulum, as well as

highlight effects of our improvements in experimental results.
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1 INTRODUCTION
Reinforcement Learning (RL) has been a popular method for deter-

mining a policy to drive a Markov system to a desired behavior. One

of the major challenges with these methods has been demonstrating

that a learned policy will work beyond the tested data points. While

it is generally assumed that a learned policy will work in a general

area that is well represented in the sample data, what qualifies as

“well represented,” as well as a prediction of how far outside the

sampled region the policy is valid, is a major open question. Previ-

ous work has sought to learn a such a certificate based on a set of

trajectories [4], however this method still relies on sampled trajec-

tories, and does not exploit knowledge of the underlying dynamics

of the system to extrapolate beyond the sampled set.

The Lyapunov Stability Criterion (LSC) is the standard basis

for proving stability of a closed loop system in the field of control

theory. This approach relies on finding a positive definite function

known as the Lyapunov candidate, and showing that the closed

loop dynamics of a system result in the candidate’s time derivative

being negative definite on some region, thus proving that the closed

loop dynamics are stable, and must converge asymptotically to the

origin if the initial condition resides in a calculated Domain of

Attraction (DoA) [8]. This concept can also be applied to RL, which

seeks to solve a larger class of problem beyond just dynamical

systems. Using the LSC can provide a stability certificate for a

learned policy, especially in cases with continuous state and action
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spaces by exploiting knowledge of the dynamics to expand the DoA

beyond just the training points.

The idea of using the LSC to validate a learned policy is not itself

new. Prior work has proposed learning a Lyapunov candidate in an

iterative manner, starting with an Sum of Squares (SoS) function

that is guaranteed to have at least a small DoA for a stable system,

then building on it and expanding it as far as is needed [9]. Other

methods propose using the value function that is the result of a RL

process as a Lyapunov function, provided the reward is appropri-

ately shaped [1]. In some cases, the learned Lyapunov candidate

may be utilized to inform a new round of learning thus integrating

the LSC into the Reinforcement Learning process itself [1, 5].

One of the key steps to this problem is proving that the LSC is sat-

isfied on a set, not just on single points. Methods using Satisfiability

Modulo Theory (SMT) have been proposed for general neural net-

works [6, 7] that, given a classification problem, consider the mini-

mal amount an input point can be varied before the class changes,

resulting in a radius around the point that forms a set on which the

classification is consistent. Other work utilize neural networks as

Lyapunov candidates, called Lyapunov Neural Networks (LNNs),

and train them by similarly framing the Lyapunov problem as a

classification problem [9], or utilizing the value function that is a

result of the RL processes [1].

We present a more efficient LNN algorithm that uses a uniform

discretization of the state space. Our uniform discretization better

integrates with the overall training paradigm of the LNN, and par-

allelizes training better than multi-resolution methods produced

by previous work [9]. By basing our algorithm off [9] and [2], we

are able to demonstrate that our method learns a stability certifi-

cate that provides a well defined DoA on a torque-limited inverted

pendulum. We also present an analysis on the construction and

training of the LNN, specifically, how the numerical Lyapunov anal-

ysis can be integrated into to the training, and the effects of various

hyper-parameters on the overall performance.

2 LYAPUNOV STABILITY ANALYSIS WITH
NEURAL NETWORKS

Consider a discrete time dynamical systems with a state space

X and action space U. The function 𝑓𝑜𝑙 : X × U → X specify

the open loop dynamics 𝑥𝑘+1 = 𝑓𝑜𝑙 (𝑥𝑘 , 𝑢𝑘 ) where 𝑥𝑘 ∈ X is the

state of the system, and 𝑢𝑘 ∈ U the action taken at time 𝑘 . If

the action is determined by some policy 𝜋 : X → U, the closed-

loop autonomous dynamics of this system are expressed as 𝑓 (𝑥) =
𝑓𝑜𝑙 (𝑥, 𝜋 (𝑥)) We assume that the origin is an equilibrium of the

closed loop dynamics, i.e. 𝑓 (0) = 0 (Note if this is not true, it can

me made true with a change of variables). The Lyapunov Stability

Criterion demonstrates that the policy will drive the state to the
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origin asymptotically if the initial state falls within some DoAD𝑐 ⊂
X that is a neighborhood of the origin. [3, 8].

Theorem 1 (Lyapunov Stability Criterion forDiscrete Time

Systems). If there exists some function 𝑣 : X → R that is positive
definite, and if the value Δ𝑣 (𝑥) = 𝑣 (𝑓 (𝑥))−𝑣 (𝑥) is negative definite
on a sub-level setV (𝑐) = {𝑥 | 𝑣 (𝑥) ≤ 𝑐}, and the functions 𝑓 and 𝑣
are Lipschitz onV (𝑐), then the system is asymptotically stable, with
a DoAV (𝑐)

The typical structure of a Lyapunov analysis starts with a candi-

date function 𝑣 , known as the Lyapunov candidate, that is positive

definite. We then analyze the value Δ𝑣 to determine where it is

negative, and finally identify the largest sub-level set V (𝑐) that
fits inside that area [8]. If we are to train a LNN as the Lyapunov

candidate 𝑣 (·), there are two things we need to accomplish: first we

must determine the DoA for a given Lyapunov candidate (section

2.1), second, we will update the LNN based on this information

such that the area of the DoA increases during training(section 2.2).

2.1 State Space Discretization
Given a closed-loop system, per theorem 1, the DoA is a sub-level

set of 𝑣 on which the value Δ𝑣 , which we will call the Lyapunov

difference, is negative. We will refer to the sign of this value as the

Lyapunov direction. Bobiti and Lazar propose a method of multi-

resolution sampling to determining such a space [2], however this

sampling would need to be redone from scratch for each step of

training, and the resolutions recalculated, which represents a signif-

icant amount of redundant work. Instead, we will take inspiration

from this multi-sampling approach, but apply it to a uniform dis-

cretization of the state space that can be reused in the next iteration.

We can take advantage of the Lipschitz nature of both 𝑓 and 𝑣 [11]

to extend the Lyapunov directionality of a point to a neighborhood

of that point.

Lemma 1. If the Lyapunov direction of a point 𝑥 ∈ X, is negative,
then there exists some neighborhood N𝑥 = {𝑥 ∈ X | ∥𝑥 − 𝑥 ∥ < 𝜖},
where 𝜖 = |Δ𝑣 (𝑥 ) |

𝐿𝑣 (1+𝐿𝑓 ) , on which all points have a negative Lyapunov

direction.

Proof. Let 𝐿𝑓 be the local Lipschitz constant of the dynamics

function 𝑓 , and 𝐿𝑣 be a Lipschitz constant of the Lyapunov function

𝑣 (using the same distance metric ∥·∥) on some domain D𝑥 ∈ X
where 𝑥 ∈ D𝑥 . Let Δ𝑥 = 𝑥 − 𝑥 for some arbitrary 𝑥 ∈ 𝐷𝑥 . By the

Lipschitz continuity definition

∥Δ𝑣 (𝑥) − Δ𝑣 (𝑥)∥ = ∥𝑣 (𝑓 (𝑥)) − 𝑣 (𝑥) − 𝑣 (𝑓 (𝑥)) + 𝑣 (𝑥)∥
≤ ∥𝑣 (𝑓 (𝑥)) − 𝑣 (𝑓 (𝑥))∥ + ∥𝑣 (𝑥) − 𝑣 (𝑥)∥

≤ 𝐿𝑣
(
1 + 𝐿𝑓

)
∥𝑥 − 𝑥 ∥

≤ 𝐿𝑣
(
1 + 𝐿𝑓

)
∥Δ𝑥 ∥

Therefore we can say that Δ𝑣 (𝑥) is bounded by

Δ𝑣 (𝑥) − 𝐿𝑣
(
1 + 𝐿𝑓

)
∥Δ𝑥 ∥ ≤ Δ𝑣 (𝑥) ≤ Δ𝑣 (𝑥) + 𝐿𝑣

(
1 + 𝐿𝑓

)
∥Δ𝑥 ∥

If Δ𝑣 (𝑥) < 0, then any point where Δ𝑥 ≤ 𝜖 , and thus is in the set

N𝑋 , will also have a negative Lyapunov direction. □

Figure 1: Example Lyapunov curves demonstrating the Lya-
punov function near the origin for a Lyapunov function
𝑣 (𝑥) = 𝑎𝑥2 for values of 𝑎 = 1.9 for the solid blue line, and
𝑎 = 0.6 for the dashed blue line. The orange line represents
the level set, and the green line represents the resolution
limit 𝜖 from algorithm 1.

Corollary 1.1. Similarly, if the point 𝑥 has a positive Lyapunov
direction then the all points 𝑥 ∈ N𝑥 will also have a positive Lyapunov
direction.

Consider a rectilinear tile of the state space with a radius 𝜏 :𝑇𝜏𝑥 =

{𝑥 ∈ X | ∥𝑥 − 𝑥 ∥∞ ≤ 𝜏}. Let 𝐿𝑓 and 𝐿𝑣 be the Lipschitz constants

of 𝑓 and 𝑣 respectively on 𝑇𝜏𝑥 under the ∥·∥∞ distance metric.

• If Δ𝑣 (𝑥) > 𝐿𝑣

(
1 + 𝐿𝑓

)
𝜏 , then the tile 𝑇𝜏𝑥 is considered as-

cendant.

• If Δ𝑣 (𝑥) < −𝐿𝑣
(
1 + 𝐿𝑓

)
𝜏 , then the tile 𝑇𝜏𝑥 is considered

descendant.

• otherwise, the tile may contain ascendant and descendant

points, and is considered mixed.

We tessellate a domain of interest with such tiles that can be an-

alyzed independently. If a tile is found to be mixed, we can use a

similar recursive refinement as suggested in [2], i.e. that tile can be

subdivided into smaller tiles that can be similarly analyzed. How-

ever, we will go a step further and say that, if all of these sub-tiles

are found to be ascendant or descendant, then the parent tile can

be considered so as well, but if one sub-tile is found to be ascendant

while another is found to be descendant, then the parent tile must

be mixed. This will result in a uniform tiling of the state space,

which is more useful when using this discretization to learn a Lya-

punov function, as we will demonstrate in the next section. The

pseudocode for this algorithm is presented in algorithm 1.

Illustrative sample results are given in figure 1 for a single state

system with a Lyapunov candidate 𝑣 (𝑥) = 𝑎𝑥2 represented as the

blue lines. The orange line represent the level 𝑐 of the estimated



Algorithm 1: Algorithm to determine regions of uniform

Lyapunov directionality

Data: Tile centers 𝐶 ∈ X, tile radius 𝜏 ∈ R, minimum

resolution 𝜏𝑚 ∈ R, sub-sample rate 𝑛 ∈ N≥2
Result: Lyapunov direction for each tile 𝐷

1 𝐿 ← ∅;
2 𝑑𝑥 ← 0 ∀ 𝑥 ∈ 𝐶;
3 𝑇 ← {{center: 𝑥 parent: 𝑥 dir: 0} ∀ 𝑥 ∈ 𝐶};
4 while 𝜏 ≥ 𝜏𝑚 do
5 𝐷𝑥 ← ∅ ∀𝑥 ∈ C;
6 for 𝑡 ∈ 𝑇 do
7 Δ𝑣 ← 𝑣 (𝑓 (𝑡 .center)) − 𝑣 (𝑡 .center);
8 𝜖 ← 𝐿𝜏𝑣,𝑡 .center

(
1 + 𝐿𝜏

𝑓 ,𝑡 .center

)
𝜏 ;

9 𝑡 .dir← sgn (min (Δ𝑣 + 𝜖, 0) +max (Δ𝑣 − 𝜖, 0));
10 𝐷𝑡 .parent ← 𝐷𝑡 .parent ∪ {𝑡 .dir};
11 for 𝑥 ∈ 𝐶 \ 𝐿 do
12 𝑑+ ← 1 if 𝑑 = 1 for any 𝑑 ∈ 𝐷𝑥 ;

13 𝑑− ← 1 if 𝑑 = −1 for any 𝑑 ∈ 𝐷𝑥 ;

14 if (𝑑+ and 𝑑−) then
15 𝐿 ← 𝐿 ∪ 𝑥 ;
16 else if 𝑑 = 1 ∀ 𝑑 ∈ 𝐷𝑥 then
17 𝑑𝑥 = 1;

18 𝐿 ← 𝐿 ∪ 𝑥 ;
19 else if 𝑑 = −1 ∀ 𝑑 ∈ 𝐷𝑥 then
20 𝑑𝑥 = −1;
21 𝐿 ← 𝐿 ∪ 𝑥 ;
22 𝜏 ← 𝜏/𝑛;
23 𝑇 ← ∅;
24 for 𝑡 ∈ 𝑇 do
25 if 𝑡 .dir = 0 and 𝑡 .parent ∉ 𝐿 then
26 Sample new points 𝑋 on grid of size 2𝑛 centered

at 𝑡 .center with spacing 𝜏 ;

27 𝑇 ← 𝑇 ∪
{{center: 𝑥 parent: 𝑡 .parent dir: 0} ∀ 𝑥 ∈ 𝑋 };

28 𝑇 ← 𝑇 ;

DoA, while the green line in the figure represents the resolution

limit 𝜖 . Note that there is a region near the origin, no matter what

valid Lyapunov candidate is used, that cannot satisfy the conditions

given in Lemma 1 for a fixed value of 𝜖 , and a finite sampling

resolution because 𝑣 (𝑥) < 𝜖 for those points. Because of this, an

analytical solution such as the Lyapunov Indirect Method [8], or

a previous Lyapunov analysis, must serve as a starting point to

show that this area is in fact part of the DoA. Therefore, unlike

the multi-resolution method proposed previously [2], this method

can naturally build upon the results of previous analysis. This will

make it particularly useful when we use it to train a LNN.

Once the Lyapunov directionality of the tiles has been found,

the DoA is estimated per theorem 1 as the sub-level set of 𝑣 (·) such
that the Lyapunov directionality of all points in that set is -1. This

can be estimated form the tiles by first identifying the tiles on the

boundary of the area where the directionality is -1:

B =
{
𝑥 if 𝑑𝑥 = −1 and 𝑑𝑛 ≠ −1 ∀ 𝑑𝑛 ∈ A+𝑥 ∀ 𝑥 ∈ C

}
whereA+𝑥 is the set of neighboring tiles distal from the origin. We

then identify the minimal value of 𝑣 (·) on this boundary set 𝑐 =

min𝑥∈B 𝑣 (𝑥), that will be the sub-level set that forms the DoA

D = V (𝑐). Note that this is a conservative estimate of the DoA as

it just uses the value at the center, however this is sufficient since

𝑣 (𝑥) ≤ max𝑥 | ∥𝑥−𝑥 ∥≤𝜏 𝑣 (𝑥).
As a modification to this method, the centers can be simulated

forward in time multiple steps [10]. Let 𝑥0 be the center point of

a tile, and 𝑥𝑚 be the end of an 𝑚 step trajectory segment. If we

consider Δ𝑣 (𝑥0) = 𝑣 (𝑥𝑚)−𝑣 (𝑥0), then 𝜖 = 𝐿𝑣
(
1 + 𝐿𝑚

𝑓

)
per lemma

1. This has a twofold effect on the performance of this algorithm,

first, if 𝐿𝑓 < 1, then 𝜖 → 𝐿𝑣 as𝑚 →∞. Secondly, a larger trajectory
near a stable equilibrium will have a larger Δ𝑣 . Both of these facts

will mean that that it will be easier to classify tile as ascendant or

descendant, and decrease the number of minimum-resolution tiles

that must be analyzed.

2.2 Lyapunov Neural Networks
The key requirement of a Lyapunov candidate is that it must be

positive definite, i.e. 𝑣 (0) = 0 and 𝑣 (𝑥) > 0 ∀ 𝑥 ∈ X \ 0. We will

call a neural network used as a Lyapunov function a Lyapunov

Neural Network. The LNN will be represented as a function of

the state parameterized by the weights of the neural network 𝜃 ,

thus our Lyapunov candidate is 𝑣 (𝑥 |𝜃 ). It is important to note

that a traditional MultiLayered Perceptron (MLP) style layered

neural network does not satisfy these conditions, and so we use the

structure proposed by Richards et. al. [9].

In addition to constructing the LNN in this manner, the methods

proposed in [9] pre-train the network using a simple SoS to give

the network a starting point. We propose to instead pretrain the

network based on a Lyapunov indirect analysis of the system [8].

In this analysis, we first linearize the dynamics about the origin.

𝑓 (𝑥) ≈ 𝜕𝑓

𝜕𝑥

����
𝑥=0

𝑥 = 𝐹𝑥𝑥

We can then use the quadratic Lyapunov function 𝑣 (𝑥) = 𝑥𝑇 𝑃𝑥

where 𝑃 is the solution to the discrete-time Lyapunov equation

𝐹𝑥𝑃𝐹
𝑇
𝑥 − 𝑃 +𝑄 = 0, and 𝑄 is an arbitrary, positive-definite matrix.

This Lyapunov functionwill provide a larger initial DoA than an SoS

Lyapunov function, and can be used just as easily for pre-training

by exploiting a-prori knowledge of the system that is simple to

calculate.

2.3 Learning Lyapunov Functions
To train a Neural Network to act as a Lyapunov candidate, a LNN,

we present a novel approach in Algorithm 1, adapted from [9].

The algorithm can be broken into 4 steps that are repeated until

convergence is reached:

(1) Determine the sub-level set DoA V (𝑐) per the LSC given

the LNN as a Lyapunov candidate.

(2) Sample a batch of points 𝑋𝑏 ⊂ V (𝛼1𝑐)
(3) Determine labels by simulating points 𝑋𝑏 forward 𝑁 steps

𝑌𝑏 = {1 if 𝑣 (𝑥𝑇 ) < 𝑐 else − 1}



(4) Train the LNN on the labeled batch (𝑋𝑏 , 𝑌𝑏 )
Algorithm 1 is novel in two key ways, first we use the discretization

method presented in section 2.1 to estimate the DoA in step 1,

and also to perform the batch sampling in step 2. Because each

tile requires calculating the Lyapunov value of the center and the

Lipschitz constant of the Lyapunov candidate on that tile, the tiles

that are within the level setV (𝛼𝑐) can be identified, and samples

can be drawn from these tiles.

Further, we can use the results of the previous DoA calculation

as a starting point for the next one. Since the DoA is only a known

subset of the true DoA, we can set the Lyapunov direction of all

tiles that are fully with the DoA to -1, and add them to the lockout

list 𝐿. This means that the resulting DoA will be at worst the largest

sub-level set of the new Lyapunov function that fits within the

previously calculated DoA. This use of the discretization we present

is due to the fact that while we use a multi-resolution analysis, the

results are ultimately presented as a uniform grid which does not

shift as the Lyapunov candidate is adapted. In addition, we will

also train the LNN on the batch multiple time, specifically, we will

choose𝑀 mini-epochs, meaning the training will go through the

batch𝑀 times.

The second improvement we make to the algorithm is in the loss

function

𝑙 = max

{
0,−𝑦 ∗

(
(𝑐∗ − 𝑣 (𝑥)

)}
+ 𝜆𝑦 + 1

2

max {0,Δ𝑣 (𝑥)}

where 𝑥 is the test point and 𝑦 is the predicted label. The value 𝑐∗

is a hyperparemter that represents the target level that defines the

DoA. A consequence of this however, is that if 𝑐∗ is too small, the

Lyapunov function flattens near the origin, and the neighborhood

of the origin that cannot be proven to be descendant by Algorithm 1

will grow. This can be seen in figure 1 by comparing the two differ-

ent Lyapunov candidates depicted. We adjust the parameter 𝑎 so the

Lyapunov candidate shifts from the solid blue line to to the dashed

blue line, to increase the size of the DoA, using the same target 𝑐∗,
While this increases the size of the DoA, it also increases the size

of every other level set, including the one given by 𝜖 (represented

by the green line). In the original training algorithm presented in

[9], this growth can eventually outpace the growth of the estimated

region of attraction, and will result in a collapse of that estimate if

there are points in this neighborhood of the origin that have not

been previously established to be stable. To rectify this, we propose

to grow this target along with the growth of the sample region in

step 2 with a factor 𝛼2 ≥ 1 to address this issue. By choosing appro-

priate values for 𝛼1 and 𝛼2, this flattening issue can be postponed,

or stopped directly. Using this growth of 𝑐∗ allows us to use larger

values for 𝛼1, which means we are able to grow the estimated DoA

faster, and thus speed up the required training times.

The resulting algorithm with our proposed modifications is pre-

sented Algorithm 2. Algorithm 2 incorporates the discretization

results from Algorithm 1 in Line 4, as well as the 𝑐∗ growth in

Line 7.

3 EXAMPLE
We demonstrate training an LNN on a torque limited inverted

pendulum governed by the following dynamics:

¥𝜃 + 𝛼1 ¤𝜃 − 𝛼2 sin𝜃 = 𝛼3𝑢 (1)

Algorithm 2: Training a Lyapunov Neural Network

Data: Closed loop dynamics 𝑓 : X → X, Initialized,
parameterized LNN 𝑣 : X → R+, Level set expansion
multiplier 𝛼 , Forward simulation horizon 𝑁 , Number

of mini-epochs to use per epoch𝑀 , initial target 𝑐∗
0

Result: Trained LNN 𝑣

1 Discretize state space with rectilinear tiles with centers X𝑐 ;
2 𝑐∗ ← 𝑐∗

0
;

3 repeat
4 Calculate Lyapunov direction 𝑑𝑥 ∀ 𝑥 ∈ X𝑐 with

algorithm 1;

5 𝑐 ←𝑚𝑎𝑥𝑥∈X𝑐 {𝑣 (𝑥) |𝑑𝑥+𝜏𝛿 ≠ −1∀𝛿 ∈ Basis (X)};
6 Sample Batch X𝑏 from the set

{𝑥 | 𝑣 (𝑥) ≤ 𝛼1𝑐 ∀ 𝑥 ∈ X𝑐 };
7 𝑐∗ ← 𝛼2𝑐

∗
; // This expansion of 𝑐∗ is critical

do prevent leveling in the DoA

8 Label Batch

Y𝑏 = {1 if 𝑣 (𝑥𝑁 ) ≤ 𝑐 , -1 otherwise ∀ 𝑥0 ∈ X𝑏 };
9 Lock all tiles 𝑥 ∈ X𝑐 | 𝑣 (𝑥) < 𝑐

𝐿𝑣 (𝑥,𝜏 ) as stable;

10 Train 𝑣 (·) on batch (X𝑏 ,Y𝑏 ) for𝑀 mini-epochs to

target 𝑐∗;
11 until convergence;

where |𝑢 | ≤ 𝑢𝑚𝑎𝑥 <
𝛼2

𝛼3

is the input (limited) torque. We use values

of 𝛼1 = 1.5, 𝛼2 = 15, and 𝛼3 = 3 for our model and 𝑢𝑚𝑎𝑥 = 4 for

the torque limiting. We design a simple Linear Quadratic Regulator

(LQR) control law 𝑢 = −𝐾𝑥 where the state 𝑥 = [𝜃, 𝜔]𝑇 and 𝜔 = ¤𝜃 .
Due to the torque limiting, the control law is saturated at ±𝑢𝑚𝑎𝑥 .

We use semi-implicit Euler integration to discretize this system in

time to get the closed loop dynamics.

Figure 2 shows estimates of the DoA yielded by three different

methods in the phase space of the plant given in (1). Along with

these estimates, the phase trajectories are included to give some

context for the DoA. The red trajectories are generated by picking

points on the stable sides of the two equilibria at 𝜃 = ± asin
(
𝛼3𝑢
𝛼2

)
and
¤𝜃 = 0. These trajectories give us an better idea of the true DoA.

The first and smallest DoA, given in figure 2 by the darkest

green contour, is the product of a Lyapunov indirect analysis that

verifies that this system is controllable, that the closed loop system

is stable. This initial DoA is built on using the discretization method

outlined in algorithm 1with a quadratic Lyapunov candidate 𝑣 (𝑥) =
𝑥𝑇 𝑃𝑥 where 𝑃 is the solution to the Lyapunov equation discussed

previously (using 𝑄 = 𝐼 ). This analysis yields a less conservative

estimate of the DoA, given in figure 2 by the next shade out.

Figure 3 illustrates the resulting Lyapunov direction analysis

based on the discretization method proposed. The phase trajectories

are included in this figure as well to help map the points in the

phase space to figure 2. Note that there are descendent tiles that

are clearly in the unstable region, as well as ascendant tiles that are

clearly in the stable region. This is due to the fact that a level set of

the quadratic Lyapunov function cannot have the shape necessary

to fully encompass the true DoA, and here is where the use of LNNs

can be useful.



Figure 2: Estimated DoA in the phase space of system based
on (moving from green to yellow) the Lyapunov indirect
method, quadradic Lyapunov function, and an LNN. The red
trajectories serve as a far less conservative approximation of
the overall DoA. In addition, sample trajectories in the phase
space are plotted, the red trajectories are chosen to outline
the true DoA.

Figure 3: Lyapunov direction based on proposed discretiza-
tion method and the quadratic Lyapunov candidate. Dark
tiles are descendant, white tiles are ascendant, and the light
blue tiles are mixed

Using the modified algorithm from [9] outlined in algorithm 2,

we can train an LNN to give us the the largest estimate of the DoA

given in figure 2 by the lightest green contour. For this method, we

utilized an LNN structured as proposed in [9], pretrained on the

quadratic Lyapunov function, and trained for 10 total epochs. The

growth of the DoA can be seen in figure 4.

4 RESULTS
Themain experimental result we present demonstrates the potential

for improvement to the learning that we get by growing our target

level set value 𝑐∗ as discussed in section 2.3. Figure 5 shows the

percentage of tiles in the discretization that are known to be stable

at a given epoch for three different trials, each with different values

for 𝛼1 and 𝛼2. The flattening problem discussed in section 2.3 is

apparent in these plots as a dramatic decrease in the percentage

of the area that is provably stable. This is due to the fact that the

new level set will now be constrained to be inside, the flat area

near the origin. When we increase 𝛼1 from 1.5 to 2.0, but let 𝛼2 = 1,

we get a slight improvement in learning speed, but we also see

the point of collapse happen sooner as well, and getting similar

overall peak performance. However, when we let 𝛼2 = 2.0, we see

a general improvement in learning speed, as well as postponing

the point of collapse. The final result is an overall improvement to

peak performance.

It is important to note that 𝛼1 and 𝛼2 are hyperparameters, and

suffer from some of the issues common in machine learning in that

it can be difficult to predict exactly how they will effect the overall

performance beyond some basic rules of thumb. However, these

result do show the potential for the effects of 𝛼1 and 𝛼2 to amplify

each other and result in better overall performance.

5 CONCLUSION
In this paper, we propose a method for discretizing a state space and

performing a Lyapunov analysis to estimate a Domain of Attraction.

This method is then integrated with method for training a Neural

Network to serve as a Lyapunov function, and we highlight the key

ways that our proposed discretization method augments this train-

ing. In addition, we propose some other modification to improve

the overall performance of the training by expanding the expected

DoA, and the use of mini-epochs. This results in an algorithm that

can be used to learn a DoA for an arbitrary policy.

There are several areas for future work on this topic to address

The method we present for addressing the flattening issue discussed

in section 2.3 works, but is still reliant on choosing correct hyper

parameters. Future work will seek to better understand these hyper-

parameters, and their effects on the overall training. Additionally,

we also plan to explore improved methods, for example, adjusting

the loss term to account for this phenomenon more directly, or

utilizing a more strategic sampling method.

In addition to improving on this method, we plan to utilize the

results of this method to build methods of reinforcement learning

that are conscious of their proposed policies abilities to achieve

goals. By establishing a DoA for a policy, a learner will be able

to identify areas the need focus in the next learning cycle, rather

than spending learning time improving areas on which the policy

already works. This will result in a more efficient overall learning,



Figure 4: Estimated DoA throughout the training of an LNN starting after pretraining with epoch 1 at the top left, to epoch 10
in the bottom right.

Figure 5: Training comparison for different values of 𝛼1 and
𝛼2, illustrating the percentage of the area of interest that is
determined to be stable at each epoch of training.

and provide stability certificates for results that guarantee that

the policy will work under the assumed dynamics. In addition,

an established Lyapunov analysis may also allow for additional

analysis such as examining stability margins to determine how

wrong assumptions about the dynamics can be for the policy to

still work.
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